HW1 Script 6
From EVOCD
Script 6
Evaluation_of_uncertainties_in_goal_values.m
%% Effect of uncertainty in Goal values %Load data from potential space sampling clear all load('Al_LHS_v1.mat') fID_Progress = fopen('Progress_Script', 'a'); fprintf(fID_Progress, 'Evaluation_of_Uncertainties_in_Goal_Values_Begin\n'); tic %% Specify sensitive parameters and their bounds %------------THIS SHOULD BE THE SAME AS IN 02_Al_LHS_run.m--------------------------------- %Example specifies all parameters and maximum ranges %X(1:12) = [alpha, asub, b0 , b1 , b2 , b3 , t0 , t1 , t2 ,t3 , cmax, cmin] low = [3.78 , 0.8, 0.0, 0.0, 0.0, 0.0 , -10, -10 , -10, -10, 2.0, 0.0]; high = [5.67, 1.2, 10, 10, 10, 10 , 10, 10 , 110, 10, 2.8, 2.0]; %% Initialize potential parameters to default in 02_Al_LHS_run.m %------------THIS SHOULD BE THE SAME AS IN 02_Al_LHS_run.m--------------------------------- %Expermental data Ec = 3.43; %DFT data - Data from your calculations of E-V curves a0 = 4.05; B = 82/160.21765; V0 = a0^3/4; %calculate alpha alpha = sqrt(9*B*V0/Ec); %X(1:12) = [alpha, asub, b0 , b1 , b2 , b3 , t0 , t1 , t2 , t3 , cmax, cmin] default = [alpha, 1.07, 2.21, 2.20, 6.0, 2.2 , 1.0, -1.78, -2.21, 8.01, 2.8, 2.0]; clear parameter parameter.elt = 'Al'; parameter.lat = 'fcc'; parameter.z = 12.0; parameter.ielement = 13.0; parameter.atwt = 26.9815; parameter.rozero = 1.0; parameter.ibar = 0; parameter.rcut = 5.0; parameter.alat = a0; parameter.esub = Ec; parameter.alpha = default(1); parameter.asub = default(2); parameter.b0 = default(3); parameter.b1 = default(4); parameter.b2 = default(5); parameter.b3 = default(6); parameter.t0 = default(7); parameter.t1 = default(8); parameter.t2 = default(9); parameter.t3 = default(10); parameter.cmax = default(11); parameter.cmin = default(12); save('parameter.mat','parameter'); filename1 = 'library.meam.init'; filename2 = 'Al.meam.init'; write_lmpmeam(filename1,filename2,parameter); %% Apply uncertainty %Set goal values at the beginning of Potential Space Evaluation Script load('goal.mat'); %Load values for goal default_goal = goal; pname = {'Ecoh', 'a0', 'V0', 'C11', 'C12', 'C44', 'E100', 'E110', 'E111', 'GSFE_I', 'GSFE_E', 'Evac', 'Eoct', 'Etetra'}; % Weighting % Use weighting determined from 04_Al_weights.m default_w = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; %Introduce uncertainty to goal value ------------ ONE AT A TIME------------- %Through a truncated normal distribution a 1000 random values are generated k = 1; %specifies goal to which uncertainty is applied g_u = normrnd(goal(k),0.1/3.0,1,1000);%first value is mean (experimental), %next is standard deviation (use 1/3 of the uncertainty percentage %to generate 99% of no. within the range) %Generate 1000 goal value combinations to get 1000 potentials clear G count = 0; for i = 1:length(g_u) count = count + 1; G(count,:) = default_goal; G(count,k) = g_u(i); end Y = zeros([size(G,1),15]); xsol = zeros([size(G,1),size(X,2)]); filename1 = 'library.meam'; filename2 = 'Al.meam'; load('parameter.mat'); goal = zeros([1 15]); fprintf(fID_Progress, '\t%f\n', toc); fprintf(fID_Progress, 'Begin_Loop\n'); for j=1:size(G,1) clear w x0 lb ub w= default_w; goal = G(j,:); save('objfunw.mat','w','goal') %optimization load('Optim.mat') x0(1:size(X,2)) = 0.5; lb = zeros(size(x0)); ub = ones(size(x0)); optimproblem.x0 = x0; optimproblem.lb = lb; optimproblem.ub = ub; xsol(j,:) = fmincon(optimproblem); % Make changes p = parameter; p.alpha = low(1)+(high(1)-low(1))*xsol(j,1); p.asub = low(1)+(high(2)-low(2))*xsol(j,2); p.b0 = low(1)+(high(3)-low(3))*xsol(j,3); p.b1 = low(1)+(high(4)-low(4))*xsol(j,4); p.b2 = low(1)+(high(5)-low(5))*xsol(j,5); p.b3 = low(1)+(high(6)-low(6))*xsol(j,6); p.t0 = low(1)+(high(7)-low(7))*xsol(j,7); p.t1 = low(1)+(high(8)-low(8))*xsol(j,8); p.t2 = low(1)+(high(9)-low(9))*xsol(j,9); p.t3 = low(1)+(high(10)-low(10))*xsol(j,10); p.cmax = low(1)+(high(11)-low(11))*xsol(j,11); p.cmin = low(1)+(high(12)-low(12))*xsol(j,12); write_lmpmeam(filename1,filename2,p); system('./bb_script.py'); p_Ec = find_energy('responses.txt', 'E_coh'); p_a0 = find_energy('responses.txt', 'a_0'); p_V0 = find_energy('responses.txt', 'V_0'); p_c11 = find_energy('responses.txt', 'C11'); p_c12 = find_energy('responses.txt', 'C12'); p_c44 = find_energy('responses.txt', 'C44'); p_B = find_energy('responses.txt', 'B'); p_E_100 = find_energy('responses.txt', 'E_100'); p_E_110 = find_energy('responses.txt', 'E_110'); p_E_111 = find_energy('responses.txt', 'E_111'); p_GSFE_I = find_energy('responses.txt', 'GSFE_I'); p_GSFE_E = find_energy('responses.txt', 'GSFE_E'); p_Evac = find_energy('responses.txt', 'E_vac'); p_Eoct = find_energy('responses.txt', 'E_Oct'); p_Etet = find_energy('responses.txt', 'E_Tetra'); Y(j,:) = [p_Ec, p_a0, p_V0, p_c11, p_c12, p_c44, p_B, p_E_100, p_E_110,... p_E_111, p_GSFE_I, p_GSFE_E, p_Evac, p_Eoct, p_Etet]; fprintf('Goal: %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f\n',G(j,:)); fprintf('Xsol: %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f\n',Y(j,:)); fname = strcat('Al_Uncertainty_',cell2mat(pname(k)),'.mat'); save(fname,'X','Y','G'); fprintf(fID_Progress, '%d\t%f\n', j, toc); end %% Further analysis m = mean(Y(:,k)); sd = std(Y(:,k)); fprintf(fID_Progress, '\t%f\n', toc); fprintf(fID_Progress, 'Evaluation_of_Uncertainties_in_Goal_Values_End\n'); fclose('all');