Scanning Electron Microscopes

(Difference between revisions)
Jump to: navigation, search
(Field Emission Gun (FEG) SEM)
Line 29: Line 29:

Revision as of 17:36, 3 March 2017

< Equipment at CAVS



SEM Diagram

Secondary Electron Microscope or SEM was developed in 1938 to image the surface of samples with high resolution. Both a SEM and a light microscope apply the same principle; however, instead of using visible light, the SEM use electrons for imaging. Nonetheless, the wavelength of visible light limits resolution of the images from the optical microscope, while accelerated electrons in the SEM, which has much shorter wavelength, make it possible to investigate features in microscale to nanoscsale with high resolution. Therefore, this instrument has opened doors in numerous fields such as, physics, materials science, biology, chemistry etc.

Scattered electrons

To create an image, a beam of incident electrons(or primary electrons) is generated at the top of the microscope by a thermal emission source, for example, a heated tungsten filament, or a field emission cathode. The energy of the incident electrons can be varied from 100 eV to 30 keV depending on the evaluation objectives. The electron beam follows a vertical path through the vacuum chamber. The beam also passes through electromagnetic lenses which focus the beam down toward the specimen. When the beam hit the specimen, secondary emissions such as electrons, and X- rays are emitted from the specimen to chamber. Secondary electrons, backscattered electrons and X-rays are detected and converted to into a signal to the screens by detectors .

However, the primary limitation of the SEM is that a sample has to be clean, dry and electrically conductive. For non-conductive specimens, they must be coated with a conductive film. Moreover, a high vacuum chamber is required during operating to reach high resolution because the incident beam may interact with atoms in air before hitting the sample.

Available at CAVS

Field Emission Gun (FEG) SEM

The field emission scanning electron microscope(FE-SEM) is an electron microscope which produces the images of the sample by scanning with a high-energy beam of electrons in a raster scan pattern. In conventional SEM, an electron beam is generated by heating a tungsten filament, thus the size of the resulting beam is limited by the geometry of the filament, which limits magnification. In contrast, in the FE-SEM, A cold field emission source generates a electron beam by applying a high voltage to a very sharp point, which is as small as 10 nm, thus the FE-SEM offers high performance and high resolutions. As a result, this FEG-SEM provides higher spatial resolution, better reliability and higher performance than other conventional scanning electron microscopes. However,the FE-SEM requires extremely high vacuum conditions in the chamber [1].

Environmental (EVO) SEM

Experimental Capabilities

Electron Backscatter Diffraction (EBSD)

Energy-dispersive X-ray spectroscopy (EDS)

Backscattered Electron (BSE) Imaging

Topographical Imaging


  1. Watt, I. M., 1985. The principles and practice of electron microscopy (pp. 283–286). New York: Cambridge University Press.
Personal tools

Material Models