Nanoscale

From EVOCD
(Difference between revisions)
Jump to: navigation, search
(Redirected page to Category:Nanoscale)
 
(33 intermediate revisions by 10 users not shown)
Line 1: Line 1:
__NOTOC__
+
#REDIRECT [[:Category:Nanoscale|Category:Nanoscale]]
{{Menu_Models}}
+
 
+
 
+
== Overview ==
+
[[Image:Al_SC_100_movie2.gif|thumb|600px| [[Uniaxial_Tension | Tensile Loading of an Aluminum Single Crystal]].  Movie showing deformation of single crystal aluminum loaded in the <100> direction at a strain rate of 10<sup>10</sup> s<sup>-1</sup> and a temperature of 300 K.]]
+
 
+
The nanoscale material models are [http://en.wikipedia.org/wiki/Molecular_dynamics molecular dynamics] codes and tools used to ascertain properties at the atomistic scale.  These simulations generally use interatomic potentials, or [http://en.wikipedia.org/wiki/Force_field_(chemistry) force fields], developed using properties obtained from both [[MaterialModels:_Electronic_Scale | electronic scale]]) calculations and experiments, and feed these results into higher scale models, such as [http://en.wikipedia.org/wiki/Dislocation_dynamics dislocation dynamics] at the [[MaterialModels:_Microscale | microscale]], or continuum models at the [[MaterialModels:_Microscale | macroscale]].  To date, much of the research at the atomistic scale has focused on informing continuum models for multiscale modeling of [[Metals_Home | metal]] and [[Polymers_Home | polymer]] material systems.  This particular site contains production and research codes that have been developed both at CAVS and outside for performing and analyzing atomistic simulation results.  The production codes have user's manuals and a theoretical manual and have been used in practice to solve complex atomistic problems at the nanoscale.  The codes that are research codes have not enjoyed the wealth of application and might not have a user's manual or a theoretical manual.  We caution the user that there is some risk in using the research version of the codes.  Another resource for computational chemistry can be found at [http://cccbdb.nist.gov/ computational chemistry].
+
 
+
== Tutorials ==
+
 
+
If you are just beginning with atomistic codes, we recommend that you familiarize yourself with LAMMPS, MATLAB (pre- and post-processing) and some of the visualization codes.
+
 
+
=== LAMMPS ===
+
This section includes brief tutorials for learning to use LAMMPS.
+
* [[LAMMPS tutorials]]
+
** [[LAMMPS_Help | How to calculate cohesive energy and lattice parameter for aluminum: Part 1]]
+
** [[LAMMPS_Help2 | How to calculate cohesive energy and lattice parameter for aluminum: Part 2]]
+
** [[Uniaxial_Tension | How to deform a three-dimensional periodic simulation cell in uniaxial tension for aluminum]]
+
** [[Uniaxial_Compression | How to deform a three-dimensional periodic simulation cell in uniaxial compression for aluminum]]
+
** [[LAMMPS_Help3 | How to generate a Sigma5(310) symmetric tilt grain boundary in aluminum]]
+
** [[LAMMPS_Fracture | How to calculate fracture stress of an iron symmetric tilt grain boundary]]
+
** [[LAMMPS_Nanowire_Deformation | How to deform a nanowire in LAMMPS]]
+
** [[LAMMPS_Polymer | How to construct polymer chains in LAMMPS]]
+
** [[LAMMPS_Relaxedz_Bi-layer | How to construct relaxed bi-layer in LAMMPS]]
+
=== MATLAB ===
+
 
+
This section includes a brief tutorial for using MATLAB.
+
* [[MATLAB_Tutorials | MATLAB Tutorials]]
+
** [[MATLAB_Basics | How to use MATLAB: The Basics of MATLAB]]
+
** [[MATLAB_Basics_2 | How to use MATLAB: The Basics of MATLAB 2]]
+
** [[MATLAB_Import_Data | How to Import Data from a Textfile]]
+
** [[MATLAB_Export_Data | How to Write Data to a Textfile]]
+
** [[Stress-Strain Plot | How to make a stress-strain plot using MATLAB]]
+
** [[Journal_Quality_Plotting | How to make a journal quality plot using MATLAB]]
+
** [[Errorbars_Plot | Example: How to make a journal quality plot with errorbars]]
+
** [[Image_Processing_with_MATLAB_1 | How to do basic image processing with MATLAB]]
+
** [[DOE_with_MATLAB_1 | Design of Experiments with MATLAB: Part 1]]
+
** [[DOE_with_MATLAB_2 | Design of Experiments with MATLAB: Part 2]]
+
** [[DOE_with_MATLAB_3 | Design of Experiments with MATLAB: Part 3]]
+
** [[DOE_with_MATLAB_4 | Design of Experiments with MATLAB: Part 4]]
+
 
+
=== Visualization ===
+
 
+
* Atomeye Basics
+
** [[Movie_AtomEye | How to make a movie using AtomEye and ImageJ]]
+
* OVITO Basics
+
** [[Movie_OVITO | How to make a movie using OVITO]]
+
 
+
=== Miscellaneous ===
+
 
+
* [[Precompiled_LAMMPS_Versions_at_CAVS | How do I run parallel LAMMPS on LINUX?]]
+
* [[PBS_script | How do I run LAMMPS on a cluster with and without PBS scripting?]]
+
* [[Precompiled_LAMMPS_Versions_at_CAVS | What are the precompiled LAMMPS versions at HPC & CAVS?]]
+
 
+
=== Preprocessing & Postprocessing Codes ===
+
 
+
This section includes codes used for preprocessing and postprocessing atomistic results.  This section can also include scripts used to generate initial structures for inclusion in molecular dynamics simulations.  Additionally, this subsection will include examples of xyz coordinate files that can be used in conjunction with the LAMMPS read_data command to upload.
+
 
+
* Initial Structure Generation
+
** [[Amorphous_Polymer_Generator | Initial amorphous polymer configurations for LAMMPS]]
+
* Data Analysis and Plotting
+
** [[Stress-Strain Plot | How to make a stress-strain plot using MATLAB]]
+
* Visualization
+
** [[Movie_AtomEye | How to make a movie using AtomEye and ImageJ]]
+
** [[Movie_OVITO | How to make a movie using OVITO]]
+
 
+
=== K-12 Projects ===
+
 
+
This project(s) is designed to help introduce high school students to STEM-related 'relevant' research in physics and materials science and engineering.
+
* [[FeCrHe | K-12 Project for Fe-Cr and Fe-He systems]]
+
 
+
== Material Models ==
+
 
+
=== Molecular Dynamics Codes ===
+
 
+
This section includes links to molecular dynamics codes.  LAMMPS<ref>S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics," J. Comp. Phys., 117, 1-19 (1995). </ref> (Large-scale Atomic/Molecular Massively Parallel Simulator) is commonly used for many molecular dynamics simulations related to metal and polymer systems at CAVS.  LAMMPS' Fortran predecessor WARP can also be used for parallel molecular dynamics simulations.  Last, DYNAMO is commonly used for MEAM (modified embedded atom method)<ref name="MEAM">Baskes, M.I. (1992). Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B, 46, 2727 (http://link.aps.org/doi/10.1103/PhysRevB.46.2727).</ref> interatomic potential generation.
+
 
+
* [[Code:_LAMMPS | LAMMPS Code]] (see also: [[LAMMPS tutorials]])
+
* [[Code:_WARP|WARP Code]]
+
* [[Code:_DYNAMO|DYNAMO Code]]
+
* [http://www.stfc.ac.uk/cse/default.aspx DLPoly] - Daresbury Laboratory POLY tools MD program
+
* [http://www.gromacs.org/ Gromacs] - GROningen MAchine for Chemical Simulation
+
* [http://imd.itap.physik.uni-stuttgart.de/ IMD] - The ITAP Molecular Dynamics program
+
* [http://www.ccp5.ac.uk/moldy/moldy.html MOLDY] - MOLecular DYnamics
+
* [http://www.ks.uiuc.edu/Research/namd/ NAMD] - Not (just) Another Molecular Dynamics program
+
* [https://simtk.org/home/openmm OpenMM] - OPEN source library for Molecular Modeling simulations
+
* [http://www.modelingmaterials.org/resources "Modeling Materials" Other Links]
+
 
+
=== Interatomic Potentials available online ===
+
 
+
* [http://www.ctcms.nist.gov/potentials/ Interatomic Potentials Repository Project at NIST]
+
* [http://enpub.fulton.asu.edu/cms/potentials/submain/available.htm EAM Potential Database at Computational Materials Science Group in Arizona State University]
+
* [http://www.princeton.edu/mae/people/faculty/carter/homepage/research/potentials/ EAM potentials for hydrogen in BCC iron]
+
* [http://sites.google.com/a/gmu.edu/eam-potential-database/ Potentials developed by Howard Sheng of George Mason University]
+
* [http://cst-www.nrl.navy.mil/ccm6/ap/eam/index.html CCM6 EAM potentials]
+
* [http://potfit.itap.physik.uni-stuttgart.de/wiki/Main_Page potfit] - the ITAP force-matching Code
+
 
+
For more information on interatomic potential generation using electronic structure information, use the following links.
+
* [http://dx.doi.org/10.1016/0920-2307(93)90001-U The embedded-atom method: a review of theory and applications ]
+
* [http://link.aps.org/doi/10.1103/PhysRevB.46.2727 Modified embedded-atom potentials for cubic materials and impurities]
+
* [http://link.aps.org/doi/10.1103/PhysRevB.62.8564 Second nearest-neighbor modified embedded-atom-method potential]
+
* [http://dx.doi.org.proxy.library.msstate.edu/10.1016/j.calphad.2010.10.007 The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations]
+
* [http://dx.doi.org/10.1016/j.physrep.2007.09.004 Interatomic potentials of the binary transition metal systems and some applications in materials physics]
+
* [http://link.aps.org/doi/10.1103/PhysRevB.63.165106 Parametrization of modified embedded-atom-method potentials for Rh, Pd, Ir, and Pt based on density functional theory calculations, with applications to surface properties]
+
* [http://www.springerlink.com/content/q73683q272716m78 Density functional theory (DFT)-based modified embedded atom method potentials: Bridging the gap between nanoscale theoretical simulations and DFT calculations ]
+
 
+
=== Visualization Codes ===
+
 
+
This section shows links to visualization packages used at the atomistic scale.  Of these, AtomEye, Ensight, OVITO, and VMD are most frequently used at CAVS.  AtomEye, OVITO, and VMD are open source codes.
+
 
+
* [http://mt.seas.upenn.edu/Archive/Graphics/A/ AtomEye]
+
* [http://en.wikipedia.org/wiki/Avizo Avizo_(software)] - 3d visualization and analysis software.
+
* [http://avogadro.openmolecules.net/wiki/Main_Page Avogadro] – Advanced molecule editor and visualizer
+
* [http://en.wikipedia.org/wiki/BOSS BOSS (molecular mechanics)] - MC in [http://en.wikipedia.org/wiki/OPLS OPLS]
+
* [http://www.ensight.com Ensight]
+
* [http://esra.sourceforge.net/cgi-bin/index.cgi esra] - Lightweight molecular modeling and analysis library (Java/Jython/Mathematica).
+
* [http://www.pirx.com/iMol/ iMol] – Molecular visualizer for Mac OS X
+
* [http://jmol.sourceforge.net/ JMol] – An open-source Java viewer for chemical structures in 3D
+
* [http://mw.concord.org/modeler/ Molecular Workbench] - Interactive molecular dynamics simulations on your desktop.
+
* [http://ovito.org/ OVITO]
+
* [http://www.ime.unicamp.br/~martinez/packmol Packmol] Package for building starting configurations for MD in an automated fashion.
+
* [http://sourceforge.net/projects/punto/ Punto] is a freely available visualisation tool for particle simulations.
+
* [http://en.wikipedia.org/wiki/PyMol PyMol] - Molecular Visualization software written in python.
+
* [http://www.openrasmol.org/ RasMol] - Molecular Graphics Visualisation Tool
+
* [http://en.wikipedia.org/wiki/Sirius Sirius visualization software] - Molecular modeling, analysis and visualization of MD trajectories.
+
* [http://www.ks.uiuc.edu/Research/vmd/ Visual molecular dynamics (VMD)] - MD simulation trajectories can be visualized and analyzed.
+
 
+
== Atomistic Research ==
+
 
+
This section includes interatomic potential information for atomistic simulations.  Embedded atom method<ref name="EAM"> Murray S. Daw, Stephen M. Foiles, Michael I. Baskes,(1993) The embedded-atom method: a review of theory and applications, Materials Science Reports, Volume 9, Issues 7-8, Pages 251-310. (http://dx.doi.org/10.1016/0920-2307(93)90001-U).</ref> potentials can be found at the [http://www.ctcms.nist.gov/potentials/ NIST Interatomic Potential] website.  A number of [[Modified Embedded Atom Method|modified embedded atom method]]<ref name="MEAM">Lee, B.J., Baskes, M.I. (2000). Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B, 62, 8564–8567 ([http://link.aps.org/doi/10.1103/PhysRevB.62.8564 http://link.aps.org/doi/10.1103/PhysRevB.62.8564]).</ref> potentials have been developed here at CAVS for lightweight metals and steel research.  Some published and ongoing interatomic potential work at CAVS includes
+
 
+
== Metals ==
+
 
+
[[Image:PE_deformation.gif|thumb|600px|[[MD_PE_deformation | Polymer Atomistic Research]].  Movie showing deformation of an amorphous polyethylene structure with 20 chains of 1000 monomers length.  The strain rate is 10<sup>10</sup> s<sup>-1</sup> and the temperature is 100 K<ref name="Hos2010">Hossain, D., Tschopp, M.A., Ward, D.K., Bouvard, J.L., Wang, P., Horstemeyer, M.F.,
+
"Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene," Polymer, 51 (2010) 6071-6083.</ref><ref name="Tsc_2010TMS">Tschopp, M.A., Ward, D.K., Bouvard, J.L., Horstemeyer, M.F., "Atomic Scale Deformation Mechanisms of Amorphous Polyethylene under Tensile Loading," TMS 2011 Conference Proceedings, accepted.</ref>.]]
+
 
+
Aluminum
+
* [[Al-Mg | Modified Embedded Atom Method (MEAM) potential for Al-Mg]]
+
* [http://arxiv.org/abs/1107.0544 MEAM potential for Al, Si, Mg, Cu, and Fe alloys] (see also: [http://code.google.com/p/ase-atomistic-potential-tests/ routines to reproduce the results])
+
* [[GB_Gen | Grain Boundary Generation of Aluminum]]<ref name="Tsc2007a">Tschopp, M. A., & McDowell, D.L. (2007). Structures and energies of Sigma3 asymmetric tilt grain boundaries in Cu and Al. Philosophical Magazine, 87, 3147-3173 ([http://dx.doi.org/10.1080/14786430701455321 http://dx.doi.org/10.1080/14786430701455321]).</ref><ref name="Tsc2007b">Tschopp, M. A., & McDowell, D.L. (2007). Asymmetric tilt grain boundary structure and energy in copper and aluminum. Philosophical Magazine, 87, 3871-3892 ([http://dx.doi.org/10.1016/j.commatsci.2010.02.003 http://dx.doi.org/10.1016/j.commatsci.2010.02.003]).</ref>
+
* [[Aluminum_Dislocation_Nucleation | Dislocation Nucleation in Single Crystal Aluminum]]<ref>Spearot, D.E., Tschopp, M.A., Jacob, K.I., McDowell, D.L., "Tensile strength of <100> and <110> tilt bicrystal copper interfaces," Acta Materialia 55 (2007) p. 705-714 ([http://dx.doi.org/10.1016/j.actamat.2006.08.060 http://dx.doi.org/10.1016/j.actamat.2006.08.060]).</ref><ref>Tschopp, M.A., Spearot, D.E., McDowell, D.L., "Atomistic simulations of homogeneous dislocation nucleation in single crystal copper," Modelling and Simulation in Materials Science and Engineering 15 (2007) 693-709 ([http://dx.doi.org/10.1088/0965-0393/15/7/001 http://dx.doi.org/10.1088/0965-0393/15/7/001]).</ref><ref name="Tsc2008a">Tschopp, M.A., McDowell, D.L., "Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading," Journal of Mechanics and Physics of Solids 56 (2008) 1806-1830. ([http://dx.doi.org/10.1016/j.jmps.2007.11.012 http://dx.doi.org/10.1016/j.jmps.2007.11.012]).</ref>
+
* [[Uniaxial_Tension | Uniaxial Tension in Single Crystal Aluminum]]<ref name="Tsc2008a" />
+
* [[Uniaxial_Compression | Uniaxial Compression in Single Crystal Aluminum]]<ref name="Tsc2008a" />
+
 
+
Copper
+
* [[GB_Gen | Grain Boundary Generation of Copper]]<ref name="Tsc2007a" /><ref name="Tsc2007b" />
+
* [[Multiscale Study Dynamic Void Collapse in Single Crystals|  Multiscale study of dynamic void collapse in single crystals]]<ref name="msdvcsc"/>
+
 
+
Magnesium
+
* [[Al-Mg | Modified Embedded Atom Method (MEAM) potential for Mg-Al]]
+
* [[Grain boundary generation in Mg | Grain boundary generation in Mg]]<ref name="Tsc2007a" /><ref name="Tsc2007b" />
+
* [[MD_Fatigue_Crack_Growth | Fatigue Crack Growth Simulation]]<ref>Tang, T., Kim, S., & Horstemeyer, M. (2010). Fatigue Crack Growth in Magnesium Single Crystals under Cyclic Loading: Molecular Dynamics Simulation. Computational Materials Science, 48, 426., 48, 426-439 ([http://dx.doi.org/10.1080/14786430701255895 http://dx.doi.org/10.1080/14786430701255895]).</ref>
+
* [[Single Crystal Tensile Deformation | Uniaxial Tension MD]]<ref>Barrett, C.D., El Kadiri, H., Tschopp, M.A. (2011). Breakdown of the Schmid Law in Homogenous and Heterogenous Nucleation Events of Slip and Twinning in Magnesium. Journal of Mechanics and Physics of Solids, in review.</ref>
+
 
+
Iron
+
* [[Fe-V | Modified Embedded Atom Method (MEAM) potential for Fe-V]]
+
* [[Fe-C | Modified Embedded Atom Method (MEAM) potential for Fe-C]]
+
* [[FeHe | Modified Embedded Atom Method (MEAM) potential for Fe-He]]
+
 
+
Tungsten
+
* [[W | Modified Embedded Atom Method (MEAM) potential for W]]
+
 
+
Calcium
+
* [[Ca | Modified Embedded Atom Method (MEAM) potential for Ca]]
+
 
+
== Ceramics ==
+
 
+
== Polymers ==
+
 
+
An example of tensile deformation in amorphous polyethylene using a united atom method potential.
+
 
+
* [[MD_PE_deformation | Atomistic Deformation of Amorphous Polyethylene]]<ref name="Hos2010" /><ref name="Tsc_2010TMS" />
+
** [[Amorphous_Polymer_Generator | Initial amorphous polymer generator used for polyethylene]]
+
 
+
== Biomaterials ==
+
 
+
== Geomaterials ==
+
 
+
== References ==
+
 
+
<references>
+
<ref name="msdvcsc">K. Solanki, M.F. Horstemeyer, M. I. Baskes, and H. Feng, Multiscale study of dynamic void collapse in single crystals, Mechanics of Materials
+
Volume 37, Issues 2-3, February-March 2005, Pages 317-330 [http://dx.doi.org/10.1016/j.mechmat.2003.08.014 dx.doi.org/10.1016/j.mechmat.2003.08.014]</ref>
+
[[Material_Models | Back to Materials Models Home]]
+
 
+
 
+
[[Category: Overview]]
+
[[Category: Nanoscale]]
+

Latest revision as of 07:47, 30 July 2014

  1. REDIRECT Category:Nanoscale
Personal tools
Namespaces

Variants
Actions
home
Materials
Material Models
Design
Resources
Projects
Education
Toolbox