Modified Embedded Atom Method (MEAM) potential for hydrocarbons (C/H)

From EVOCD
(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
Under construction
+
These MEAM parameters for elements C and H as well as the diatomic CH are appropriate for energy minimization and reactive molecular dynamics simulations of SATURATED hydrocarbons, where all carbon atoms have the sp3 hybridization (single C-C bonds). At the current state, MEAM cannot handle unsaturated compounds with great accuracy. Furthermore, these C and H parameters are not appropriate for diamond and graphite systems.
 +
 
 +
For the first time, MEAM can be used to simulate hydrocarbons and hydrocarbon/metal systems, since it has a large parameter database for major metals in the periodic table of elements. Since MEAM is a reactive potential, it can also be used to simulate fracture and fatigue in hydrocarbon-based polymers, such as polyethylene and polypropylene and their composites with nanometals as well as polymer/metal interfaces.

Revision as of 14:37, 25 July 2014

These MEAM parameters for elements C and H as well as the diatomic CH are appropriate for energy minimization and reactive molecular dynamics simulations of SATURATED hydrocarbons, where all carbon atoms have the sp3 hybridization (single C-C bonds). At the current state, MEAM cannot handle unsaturated compounds with great accuracy. Furthermore, these C and H parameters are not appropriate for diamond and graphite systems.

For the first time, MEAM can be used to simulate hydrocarbons and hydrocarbon/metal systems, since it has a large parameter database for major metals in the periodic table of elements. Since MEAM is a reactive potential, it can also be used to simulate fracture and fatigue in hydrocarbon-based polymers, such as polyethylene and polypropylene and their composites with nanometals as well as polymer/metal interfaces.

Personal tools
Namespaces

Variants
Actions
home
Materials
Material Models
Design
Resources
Projects
Education
Toolbox