# Code: microMegas

Name | microMegas (mM) | |
---|---|---|

Status | released | |

Release Date | mM v. 1.0 - 09/2009; mMpar v. 1.0 - 01/2010 | |

Authors | Developers Team at CNRS ONERA, France; mMpar v.1.0=extension of original mM v. 3.2 + OpenMP additions, by Florina Ciorba | |

Contact | CNRS-ONERA The Developers' Team or Sebastien Groh | |

License | GNU GPL License | |

Repository | mM v1.0 or mMpar | |

Documentation | mM: README.txt (mM/trunk); README.txt (mM/tags/1.0) or | mMpar: README.txt (mMpar/trunk); MSU.CAVS.CMD.2010-R0002.pdf (mMpar/doc) |

Known problems | None |

**Description:**

MicroMegas is a 3-D DDD (Discrete Dislocation Dynamics) simulations

*To report bugs, problems or to make comments please use the discussion tab above.*

back to the Multiscale Simulations codes home

## Overview of microMegas

MicroMegas (also known as 'mM') is an open source program for DD (Dislocation Dynamics) simulations originally developed at the 'Laboratoire d'Etude des Microstructures', CNRS-ONERA, France. mM is a free software under the terms of the GNU General Public License as published by the Free Software Foundation. Discrete dislocation dynamics (DDD) is a numerical tool used to model the plastic behavior of crystalline materials using the elastic theory of dislocations [1]. DDD is the computational counterpart to in site TEM tests. MicroMegas is a legacy simulation code used to study the plasticity of mono-crystalline metals, based on the elasticity theory that models the dislocation interactions into an elastic continuum. In crystalline materials, plastic deformation may be explained by (i) twinning, (ii) martensic transformation or/and (iii) dislocation interactions (see Figure 1).

MicroMegas is used at CAVS for modeling dislocation interactions and reactions in an elastic continuum. The code is used in a hierarchical multiscale framework of the plasticity to obtain information related to the hardening of the material (see for example, the multiscale framework presented in this review paper). Details of the discrete dislocations model can be found in the methodology paper and in the references at the bottom of the page.

The discrete dislocation simulation code can be used for HCP, BCC and FCC materials.

## Available DDD Codes

## References

Please remember to cite the relevant references from the list below when publishing results obtained with microMegas:

- F. M. Ciorba, S. Groh and M. F. Horstemeyer. Parallelizing discrete dislocation dynamics simulations on

multi-core systems. 10th Int. Conf. on Computational Science, Procedia Computer Science, 1:1, pp. 2129-2137, 2010.

- S. Groh, E. B. Marin, M. F. Horstemeyer, and H. M. Zbib. Multiscale modeling of the plasticity in an aluminum single crystal. Int. J. of Plasticity, 25, pp. 1456-1473, 2009.
- S. Groh and H. M. Zbib. Advances in Discrete Dislocations Dynamics and Multiscale Modeling, J. Eng. Mater. Technol. vol. 131:4, 041209 (10 pages), 2009.
- Multiscale Modeling of Heterogenous Materials: From microstructure to macro-scale properties. Chapter 2: Discrete Dislocation Dynamics: Principles and Recent Applications (by Marc Fivel). Edited by Oana Cazacu. Published by Wiley. ISBN: 9781848210479, 2008.
- B. Devincre, V. Pontikis, Y. Brechet, G.R. Canova, M. Condat and L.P. Kubin. Three-dimensional Simulations of Plastic Flow in Crystals. Plenum Press: New York, M. Marechal, B.L. Holian (eds.), 1992, p. 413
- L.P. Kubin and G. R. Canova. The modelling of dislocation patterns. Scripta Metall., 27, pp. 957-962, 1992.