Animations List

From EVOCD
(Difference between revisions)
Jump to: navigation, search
(Geoscale Animations)
 
(100 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 +
== Astronomical Scale Animations ==
 +
 +
== Geoscale Animations ==
 +
TERRA2D mantle convection simulation using ISV material model: <ref name="unpublished"></ref> <br> [[File:animation-ICMEweb.gif]] <br> <br>
 +
 
== Structural Scale Animations ==
 
== Structural Scale Animations ==
A comparative study of design optimisation methodologies for side-impact crashworthiness,using injury-based versus energy-based criterion<ref name="Horst_2009">M.F. Horstemeyer, X.C. Ren,H. Fang, E. Acar,and P.T. Wang, "A comparative study of design optimisation methodologies for side-impact crashworthiness,using injury-based versus energy-based criterion," International Journal of Crashworthiness,Vol. 14, No. 2, April 2009, 125–138. [[Media:110.Ren.dummy.crash.pdf‎|--link]]</ref>: [[Image:110Rendummycrash.gif]]
+
<!-- Before editing this page please visit this tutorial. https://icme.hpc.msstate.edu/mediawiki/images/0/03/How_to_Convert_to_GIF_and_Upload_to_ICME.pdf -->
  
A study on the effect of impacts to the head in a football helmet: [[Image:HelmetHeadImpactv3.gif]]
 
  
NOCSAE drop test of Riddell 360 Football helmet with and without face mask attached: [[Image:Rawlings-Combined_32Percent.gif|700px]]
+
A comparative study of design optimisation methodologies for side-impact crashworthiness, using injury-based versus energy-based criterion:<ref name="Horst_2009">Horstemeyer, M.F.; X.C. Ren; H. Fang; E. Acar; P.T. Wang, "A comparative study of design optimisation methodologies for side-impact crashworthiness,using injury-based versus energy-based criterion," International Journal of Crashworthiness, 1754-2111, Vol. 14, No. 2, April 2009, 125–138. [[Media:110.Ren.dummy.crash.pdf‎|--link]]</ref> <br> [[Image:110Rendummycrash.gif]] <br> <br>
  
 +
Dodge Neon side impact:<ref name="Horst_2009"></ref> <br> [[Image:120neonsideimpact.gif|640px]] <br> <br> [[Image:Dodgeneoncrunch.gif]] <ref name="crashworthiness">H. Fang, K. Solanki, M.F. Horstemeyer, “Numerical simulations of multiple vehicle crashes and multidisciplinary crashworthiness optimization,” International Journal of Crashworthiness, Vol. 10 (2), pp. 161-171, 2005.</ref> <br><br>
  
NOCSAE drop test of Rawlings Quantum Plus Football helmet with and without face mask attached: [[Image:Riddell-360-Combined_32Percent.gif|700px]]
+
Finite element simulation of a side impact Nissan quest van: <ref name="unpublished"></ref> <br> [[Image:Nissansideimpact1.gif]] <br> <br>
  
A study on the structure and mechanical behavior of the Terrapene carolina carapace:A pathway to design bio-inspired synthetic composites<ref name="HRhee2010">H. Rhee, M.F. Horstemeyer,Y. Hwang,H. Lim,H. El Kadiri, W. Trim "A study on the structure and mechanical behavior of the Terrapene carolina carapace:A pathway to design bio-inspired synthetic composites," Materials Science and Engineering,29 (2009) 2333–2339[[Media:120.turtle.paper.2009.pdf‎|--link]]</ref>: [[Image:120turtlepaper2009.gif|300px]]
+
Dodge Neon front impact:<ref name="Horst_2009"></ref> <br> [[Image:Front_impact.gif‎‎|600px]] <br><br>
  
 +
Finite element analysis of a front end BMW crash showing the dummy strike to the airbag <ref name="unpublished"></ref> <br>[[Image:BMWfrontcrash.gif]] <br> <br>
  
High strain rate deformation of polycarbonate.  Shown as a difference image between successive frames, so movement triggers an intensity other than gray: <br />
+
Crash of an all steel vehicle<ref name="unpublished">Unpublished</ref> <br> [[Image:PNGV.vehicle.gif]] <br> <br>
[[Image:PC_2_difference.gif|600px]]
+
  
High strain rate deformation of polycarbonate: [[Image:PC_2_lowres.gif|300px]]
+
Pam crash front end simulation of a dodge neon impact.
 +
<ref name="HighCycFatigue">Horstemeyer, M.F., Yang, N., Gall, K.A., McDowell, D.L., Fan, J., and Gullett, P., “High Cycle Fatigue on a Die Cast AZ91E-T4 Magnesium alloy,” Acta Materialia, Vol. 52, pp. 1327-1336, 2004.</ref> <br> [[Image:Pamcrashdodge.gif]] <br> <br>
  
Tube forming process from sheet steel: [[Image:animation_ICME5.gif|600px]]
+
Neon96 front end offset crash.
 +
<ref name="Neon96">H. Fang, K. Solanki, M.F. Horstemeyer, “Numerical simulations of multiple vehicle crashes and multidisciplinary crashworthiness optimization,” International Journal of Crashworthiness, Vol. 10 (2), pp. 161-171, 2005.</ref><br>[[Image:Neon96Offset.gif]] <br> <br>
  
Pressure wave propagation at hyoid bone: [[Image:Hyoid_pressure.gif|736px]]
+
Neon96 front end crash.
 +
<ref name="Neon96frontend">Fang, H., Rais-Rohani, M., Liu, Z., Horstemeyer, M.F., “A Comparative Study of Metamodeling
 +
Methods for Multiobjective Crashworthiness Optimization,” Computers and Structures, Vol. 83/25-26, pp. 2121-2136, 2005.
 +
</ref><br> [[Image:Neon96Frontal.gif]] <br> <br>
  
A7 steel tension test performed on an Instron 5882: [[File:A7 Tension.gif|200px]]
+
Neon96 side impact crash.
 +
<ref name="Neon96frontend"></ref> <br> [[Image:Neon96Side.gif]] <br><br>
 +
Finite element analysis of bus impact: <br> [[Image:Finite_element_champion_bus_side_impact.gif‎|600px]] <br><br>
  
A study on the effects of blast loading and failure of a building exterior cladding and its column collapse: <ref>Wince, J. [mailto:info@scienalysis.com] and Vaughan, D., Development of High Fidelity Physics Based Fast Running Model for Progressive Collapse Assessment of Above Ground Fixed Structures,  Proceedings of the AIAA Missile Science Conference, November 2006. </ref> <br>
+
Magnesium Corvette cradle finite element simulation showing the design stresses. <ref name="unpublished"></ref> <br> [[Image:Cradle.gif]] <br> <br>
 +
 
 +
Finite element simulation of a Cadillac a356 aluminum cast control arm illustrating fracture location. <br> <ref name="">Horstemeyer, M.F., Osborne, R., and Penrod, D., “Microstructure-Property Analysis and Optimization
 +
of a Control Arm, American Foundary Society, AFS Transactions, 02-036, pp. 297-314, 2002. <br> Horstemeyer, M.F., Integrated Computational Materials Engineering (ICME) for Metals: Reinvigorating Engineering Design with Science, Wiley Press, 2012. <br>  Yin, X., Lee, S., Chen, W., Liu, W.K., Horstemeyer, M.F. “A multiscale design approach with random field representation of material uncertainty,” 2008 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC 2008, v 1, n PART A, p 113-122, 2009, 2008 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC 2008.
 +
</ref> <br>[[Image:Controlarms2.gif]]<br><br>
 +
 
 +
A study on the effect of impacts to the head in a football helmet: <br> [[Image:HelmetHeadImpactv3.gif]] <br><br>
 +
 
 +
NOCSAE drop test of Riddell 360 Football helmet with and without face mask attached by Alston Rush (RPPS): <br> [[Image:Rawlings-Combined_32Percent.gif|700px]] <br><br>
 +
 
 +
NOCSAE drop test of Rawlings Quantum Plus Football helmet with and without face mask attached by Alston Rush (RPPS): <br> [[Image:Riddell-360-Combined_32Percent.gif|700px]] <br><br>
 +
 
 +
Bat to ball impact:<ref name="unpublished"></ref> <br> [[Image:Bat_impact.gif|700px]] <br><br>
 +
 
 +
A study on the structure and mechanical behavior of the Terrapene carolina carapace:A pathway to design bio-inspired synthetic composites<ref name="HRhee2010">H. Rhee, M.F. Horstemeyer,Y. Hwang,H. Lim,H. El Kadiri, W. Trim "A study on the structure and mechanical behavior of the Terrapene carolina carapace:A pathway to design bio-inspired synthetic composites," Materials Science and Engineering,29 (2009) 2333–2339[[Media:120.turtle.paper.2009.pdf‎|--link]]</ref>:
 +
<br> [[Image:120turtlepaper2009.gif|300px]] <br><br>
 +
 
 +
 
 +
High strain rate deformation of polycarbonate.  Shown as a difference image between successive frames, so movement triggers an intensity other than gray: <br>
 +
[[Image:PC_2_difference.gif|600px]] <br><br>
 +
 
 +
High strain rate deformation of polycarbonate: <br> [[Image:PC_2_lowres.gif|300px]] <br><br>
 +
 
 +
Tube forming process from sheet steel: <br> [[Image:animation_ICME5.gif|600px]] <br><br>
 +
 
 +
Pressure wave propagation at hyoid bone: <br> [[Image:Hyoid_pressure.gif|736px]] <br><br>
 +
 
 +
A7 steel tension test performed on an Instron 5882: <br> [[File:A7 Tension.gif|200px]] <br><br>
 +
 
 +
A study on the effects of blast loading and failure of a building exterior cladding and its column collapse: <ref>Wince, J. [mailto:info@scienalysis.com] and Vaughan, D., Development of High Fidelity Physics Based Fast Running Model for Progressive Collapse Assessment of Above Ground Fixed Structures,  Proceedings of the AIAA Missile Science Conference, November 2006. </ref> <br><br>
 
<br>
 
<br>
 
       [[Image:femaframe_g1.gif]]
 
       [[Image:femaframe_g1.gif]]
Line 39: Line 80:
 
A simulation of high velocity bullet impacting a square composite plate: <br>
 
A simulation of high velocity bullet impacting a square composite plate: <br>
 
<br>
 
<br>
[[Image:bullet-rate.gif|400px]]
+
[[Image:bullet-rate.gif]]<br><br>
 +
 
 +
Internal State Variable Plasticity Damage Modeling of Copper Tee-Shaped Tube Hydroforming Process<ref name="hydroforming">Crapps, J., Marin, EB, Horstemeyer, MF, Yassar, R, and Wang, PT, "Internal State Variable Plasticity Damage Modeling of Copper Tee-Shaped Tube Hydroforming Process," J. Matls. Proc. Tech, ASME, 1726-1737, 2010.</ref> <br> [[Image:Hydroforming-Isdyna-profile.gif]] <br><br>
 +
 
 +
A different viewpoint<ref name="hydroforming"></ref> <br> [[Image:Hydroforming-Isydna-iso.gif]] <br> <br>
 +
 
 +
One more viewpoint<ref name="hydroforming"></ref> <br> [[Image:SideHydroforming.gif]] <br> <br>
 +
 
 +
CTH simulation showing a bullet penetrating a metal armor<ref name="unpublished"></ref> <br> [[Image:Matsbullet.gif]] <br> <br>
 +
 
 +
Application of internal state variable plasticity and damage models to welding<ref name="welding">Dike, J.J.; Ortega, A.R.; Bammann, D.J.; Lathrop, J.F., "Application of internal state variable plasticity and damage models to welding," June 1997.</ref> <br> [[Image:Welding.gif]] <br><br>
 +
 
 +
Finite element simulation of Columbia Space Shuttle foam impact on the graphite-epoxy composite nose cone<ref name="unpublished"></ref> <br> [[Image:130ks.gif]] <br><br>
 +
 
 +
Finite element simulation of Columbia Space Shuttle foam impact on the foam panels<ref name="unpublished"></ref> <br> [[Image:Columbiaedge.gif]] <br><br>
 +
 
 +
CTH simulation of Chicxulub meteor strike<ref name="Chicxulub">Mowry, J.L., "High Strain Rate Finite Element Simulations," Mississippi State University, August 2007.</ref> <br> [[Image:Meteorimpact1.gif]] <br> <br>
 +
 
 +
A rock going through the groove of a tire simulation on a road<ref name="unpublished"></ref> <br> [[Image:TIRE.gif]] <br> <br>
 +
 
 +
Finite element simulation of the front edge of the Des Moines ice sheet showing surging<ref name="ice">Sherburn, M. S., Horstemeyer, M. F., Solanki, K., "Simulation Analysis of Glacial Surging
 +
in the Des Moines Ice Lobe, 2008"</ref> <br> [[Image:IceSurfaceGliding.gif]] <br> <br>
 +
 
 +
Simulation of the temperature excursions for a powder metal experiencing a LENS process.<ref name="PowDepoPro">Wang, L., Pratt, P, Felicelli, S, El Kadiri, H, Berry, J., Wang, P, and Horstemeyer, MF, “Pore Formation in Laser-Assisted Powder Deposition Process,” J. Manuf. Sci. Eng.,Volume 131,  Issue 5, 051008, 2009</ref> <br> [[Image:LENStemperature.gif]] <br> <br>
 +
 
 +
Finite element simulation of a door stamp process<ref name="unpublished"></ref> <br> [[Image:Optris.gif]] <br> <br>
 +
 
 +
Hydrodynamic Modeling of Impact Craters in Ice
 +
<ref name="icecrater">Sherburn, J and Horstemeyer, MF, Hydrodynamic Modeling of Impact Craters in Ice, Int J. Impact Engineering, Vol. 37, No.1 , pp. 37-46, 2010.</ref><br>[[Image:CTHimpactingice.gif]] <br><br>
 +
 
 +
Studying the Impact of a Meteor
 +
<ref name="unpublished"></ref> <br> [[Image:CTHmeteorpress.gif]] [[Image:CTHmeteor.gif]] <br><br>
 +
 
 +
Ice Copper Impact
 +
<ref name="Ice.copper.cth">Sherburn, J and Horstemeyer, MF, Hydrodynamic Modeling of Impact Craters in Ice, Int J. Impact Engineering, Vol. 37, No.1 , pp. 37-46, 2010.</ref> <br>
 +
[[Image:Ice.copper.impact.cth.gif]] <br> <br>
 +
 
 +
Ford Truck Running into a Barrier
 +
<ref name=”Ford800”>Horstemeyer, M.F., Solanki, K., and Steele, W.G. Uncertainty Methodologies to Characterize Damage Evolution Model, Plasticity 2005, Kauai (Hawaii), Jan 4-8, 2005.</ref> <br> [[Image:Ford800R_BI.gif]] <br><br>
 +
 
 +
Friction Stir Weld Fatigue Crack
 +
<ref name="Friction.stir.weld.fatigue.crack">Jordon, JB, Horstemeyer, M.F.; Grantham, J.; Badarinarayan, H., “Fatigue evaluation of friction stir spot welds in magnesium sheets,” Magnesium Technology, p 267-271, 2010, Magnesium Technology 2010.</ref> <br>
 +
[[Image:Friction.stir.weld.mag.crack.gif]] <br> <br>
  
 
== Macroscale Animations ==
 
== Macroscale Animations ==
 +
 +
<!-- Before editing this page please visit this tutorial. https://icme.hpc.msstate.edu/mediawiki/images/0/03/How_to_Convert_to_GIF_and_Upload_to_ICME.pdf -->
 +
 +
Notch Tensile Test<ref name="tensile">Horstemeyer, M.F., Gall, K.A., Dolan, K., Haskins, J., Gokhale, A.M., and Dighe, M.D., "Numerical, Experimental, and Image Analyses of Damage Progression in Cast A356 Aluminum Notch Tensile Bars,"  Theoretical and Applied Fracture Mechanics. v 39, n 1, p 23-45, 2003.</ref> <br> [[Image:Notchtensiletest.gif]]
 +
 +
Three-Dimensional Statistical Void Analysis of AM60B Magnesium using CT Imagery
 +
<ref name="amywaters">Amy M. Waters, Harry E. Martz, Kenneth W. Dolan, Mark F. Horstemeyer, and Robert E. Green Jr. “Three-Dimensional Statistical Void Analysis of AM60B Magnesium using CT Imagery,” Journal for American Society for Nondestructive Testing: Materials Evaluation, Vol. 58, No. 10, p. 1221, 2000.</ref> <br>[[Image:Xraynotchedside.gif]] <br> <br>
 +
 +
Gray cast iron being pulled in tension in an EVO-SEM <br>
 +
[[Image:GCI_crack_propagation.gif‎]]
  
 
== Mesoscale Animations ==
 
== Mesoscale Animations ==
 +
 +
<!-- Before editing this page please visit this tutorial. https://icme.hpc.msstate.edu/mediawiki/images/0/03/How_to_Convert_to_GIF_and_Upload_to_ICME.pdf -->
 +
 +
Finite element shock wave progression showing decohesion at grain boundaries with an initial void.<ref name="unpublished"></ref>: <br> [[Image:10GBHOLE.gif]] <br><br>
 +
 +
Damage Modeling of A356 Aluminum<ref name="ICMEbook">Horstemeyer, M.F., Integrated Computational Materials Engineering (ICME) for Metals: Reinvigorating Engineering Design with Science, Wiley Press, 2012.</ref> <br> [[Image:USCARmicromechanics.gif]] <br><br>
 +
 +
Crystal plasticity finite element simulation showing a void growing under a uniaxial tension.
 +
<ref name="voidgrowthfcc">Potirniche, G.P., J. L. Hearndon, M. F. Horstemeyer, X. W. Ling. Lattice orientation effects on void growth and coalescence in fcc single crystals. International Journal of Plasticity, Vol. 22, No. 5, May, 2006, pp. 921-942, May 2006.</ref> <br> [[Image:FEA(abaqus).gif]] <br> <br>
 +
 +
Crystal plasticity calculation of crack microstructurally small crack growth in an aluminium alloy
 +
<ref name="Johnston">Johnston, S., Potirniche, G.P., Daniewicz, S.R., Horstemeyer, M.F., “Three-Dimensional Finite Element Simulations of Microstructurally Small Fatigue Crack Growth in 7075 aluminum alloy,” Fatigue Fract Engng Mater Struct, Vol. 29, pp. 597-605, 2006.</ref> <br>[[Image:Xtal.plasticity.gif]] <br> <br>
 +
 +
Experimental observation of void coalescence illustrating void sheeting and localization of nickel showing the strain contours. <ref name="VoidCoalescence">Jones, MK., Horstemeyer, MF., Belvin, AD, “A Multiscale Analysis of Void Coalescence in Nickel,” JEMT, Vol. 129, pp. 94-104, 2007.</ref> <br> [[Image:Lavision.gif]] <br> <br>
 +
 +
Finite element simulation of a columnar growth of a dendrite.<ref name="Acta">Acta Materialia Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods Yin Felicelli L Wang. May 2011</ref><br>[[Image:Dendritecolumn.gif]] <br> <br>
 +
 +
A mechanism based Thermomechanical Cohesive Zone Approach For Modeling Ductile Fracture <ref name="ductileFrac">Klein, P.A.; Bammann, D.J.; McFadden, S. X.; Foulk, J. W.; Antoun, B. R.; "A Mechanism-Based Thermomechanical Cohesive Zone Approach for Modeling Ductile Fracture," 2003.</ref> <br> [[Image:Crack.growth.gif]] <br> <br>
 +
 +
A finite element simulation of a void nucleation simulation showing the debonding of aluminium from the silicon particle. (Reference Info Pending) <br>
 +
[[Image:Particle.voidnuc.gif]] [[Image:Al.si.zoom.gif]] <br> <br>
  
 
== Microscale Animations ==
 
== Microscale Animations ==
[[Image: DDD_simulation_of_FR_Source_in_Iron.gif|left‎]]
 
  
 +
<!-- Before editing this page please visit this tutorial. https://icme.hpc.msstate.edu/mediawiki/images/0/03/How_to_Convert_to_GIF_and_Upload_to_ICME.pdf -->
 +
 +
[[Image: DDD_simulation_of_FR_Source_in_Iron.gif|left‎]]
 
<ref> Raabe, Dierk. [http://www.dierk-raabe.com/movies-and-animations/discrete-dislocation-dynamics-ddd/ Discrete Dislocation Dynamics Simulations (DDD)] </ref>
 
<ref> Raabe, Dierk. [http://www.dierk-raabe.com/movies-and-animations/discrete-dislocation-dynamics-ddd/ Discrete Dislocation Dynamics Simulations (DDD)] </ref>
 +
 +
 +
A Multiscale Model of Plasticity Based on Discrete Dislocation Dynamics<ref name="Zbib">Zbib, H.M.; De La Rubia, T.D.; Bulatov, V, "A Multiscale Model of Plasticity Based on Discrete Dislocation Dynamics," January 2002.</ref>: <br> [[Image:Dd.dipole.gif]] [[Image:DDOneFrSmall.gif]] [[Image:DDpureEDGE.gif]] [[Image:Dd.110PrismaticLoop.gif]] [[Image:DDpileupaboundary.gif]]  [[Image:DDImpact.gif]]
  
 
== Nanoscale Animations ==
 
== Nanoscale Animations ==
 +
 +
On the Growth of Nanoscale Fatigue Cracks
 +
<ref name="Fatiguecracks">Potirniche, G.P., Horstemeyer, M.F., “On the Growth of Nanoscale Fatigue Cracks,” Phil. Mag. Letters, Vol. 86, No. 3, pp. 185-193, 2006.</ref> <br> [[Image:Fatiguemd101.gif]] <br><br>
 +
 +
Nanostructurally Small Cracks (NSC): A Review of Atomistic Modeling of Fatigue
 +
<ref name="nanostruc">Horstemeyer, M.F., Tang, T., Kim, S., Potirniche, G., and Farkas, D., “Nanostructurally Small Cracks (NSC): A Review of Atomistic Modeling of Fatigue,” Int. J. Fatigue, Vol. 32, Issue 9, pp. 1473-1502, 2010.</ref> <br> [[Image:Fatiguemd100.gif]] <br> <br>
 +
 +
Nanostructurally Small Cracks (NSC): A Review of Atomistic Modeling of Fatigue
 +
<ref name="nanostruc">Horstemeyer, M.F., Tang, T., Kim, S., Potirniche, G., and Farkas, D., “Nanostructurally Small Cracks (NSC): A Review of Atomistic Modeling of Fatigue,” Int. J. Fatigue, Vol. 32, Issue 9, pp. 1473-1502, 2010.</ref> <br> [[Image:EAMfatigue111.gif]] <br> <br>
 +
 +
An Atomistic Study of Size Scale Effects on Void Growth in Single and Polycrystalline Nickel
 +
<ref name="voidnic">Gullett, P.M., Wagner, G.J., Horstemeyer, M.F., Potirniche, G.P., Baskes, M.I., “An Atomistic Study of Size Scale Effects on Void Growth in Single and Polycrystalline Nickel,” 3rd Int. Conf. Computational Modeling and Simulation of Materials, Portugal, Spain, June 2004.</ref> <br> [[Image:Run3bsmall.gif]] <br><br>
 +
 +
A molecular dynamics study of void growth and void coalescence in single crystal nickel<ref name="void">Potirniche, G.P., M. F. Horstemeyer, G. J. Wagner, P. M. Gullett. A molecular dynamics study of void growth and void coalescence in single crystal nickel. International Journal of Plasticity, Vol. 22, No.2, pp. 257-278, Feb, 2006.</ref> <br> [[Image:Voidtension.gif]] <br><br>
 +
 +
Atomistic Simulations of Bauschinger Effects of Metals with High Angle and Low Angle Grain Boundaries<ref name="AtomBauschinger">H. Fang, M.F. Horstemeyer, M.I. Baskes, K. Solanki, “Atomistic Simulations of Bauschinger Effects of Metals with High Angle and Low Angle Grain Boundaries,” Computational Methods in Applied Mechanics and Engineering, Vol. 193, p. 1789-1802, 2004.</ref>: <br> [[Image:EAM.Free HiGB Dfgrd.gif]] <br><br>
 +
 +
<ref name="AtomBauschinger"></ref> <br> [[Image:EAM.centro.tension (1).gif]] <br> <br>
 +
 +
Atomistic simulation of an imploding copper ring<ref name="DynamicVoidCollapse">K. Solanki, M.F. Horstemeyer, M.I. Baskes, H. Fang, “Multiscale Study of Dynamic Void Collapse in Single Crystals,” Mechanics of Materials, Vol. 37, pp. 317-330, 2005.</ref> <br> [[Image:Cu1.gif]]<br> <br>
 +
 +
Atomistic simulation of an imploding aluminum ring.<ref name="DynamicVoidCollapse"></ref><br>[[Image:Al134.gif]] <br> <br>
  
 
[[Image:Al_SC_100_movie2.gif|300px| [[Uniaxial_Tension | Tensile Loading of an Aluminum Single Crystal]].  Movie showing deformation of single crystal aluminum loaded in the <100> direction at a strain rate of 10<sup>10</sup> s<sup>-1</sup> and a temperature of 300 K.]]
 
[[Image:Al_SC_100_movie2.gif|300px| [[Uniaxial_Tension | Tensile Loading of an Aluminum Single Crystal]].  Movie showing deformation of single crystal aluminum loaded in the <100> direction at a strain rate of 10<sup>10</sup> s<sup>-1</sup> and a temperature of 300 K.]]
  
 
[[Image:PE_deformation.gif|300px|[[MD_PE_deformation | Polymer Atomistic Research]].  Movie showing deformation of an amorphous polyethylene structure with 20 chains of 1000 monomers length.  The strain rate is 10<sup>10</sup> s<sup>-1</sup> and the temperature is 100 K<ref name="Hos2010">Hossain, D., Tschopp, M.A., Ward, D.K., Bouvard, J.L., Wang, P., Horstemeyer, M.F.,"Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene," Polymer, 51 (2010) 6071-6083.</ref><ref name="Tsc_2010TMS">Tschopp, M.A., Ward, D.K., Bouvard, J.L., Horstemeyer, M.F., "Atomic Scale Deformation Mechanisms of Amorphous Polyethylene under Tensile Loading," TMS 2011 Conference Proceedings, accepted.</ref>.]]
 
[[Image:PE_deformation.gif|300px|[[MD_PE_deformation | Polymer Atomistic Research]].  Movie showing deformation of an amorphous polyethylene structure with 20 chains of 1000 monomers length.  The strain rate is 10<sup>10</sup> s<sup>-1</sup> and the temperature is 100 K<ref name="Hos2010">Hossain, D., Tschopp, M.A., Ward, D.K., Bouvard, J.L., Wang, P., Horstemeyer, M.F.,"Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene," Polymer, 51 (2010) 6071-6083.</ref><ref name="Tsc_2010TMS">Tschopp, M.A., Ward, D.K., Bouvard, J.L., Horstemeyer, M.F., "Atomic Scale Deformation Mechanisms of Amorphous Polyethylene under Tensile Loading," TMS 2011 Conference Proceedings, accepted.</ref>.]]
 +
 +
Atomistic Scale Study on Effect of Crystalline Misalignment on Densification During Sintering Nano Scale Tungsten Powder <ref name ="NanoTungstenPow">Moitra, A., Kim, S., Kim, S.G., Park, S.J., German, R., and Horstemeyer, M.F., “Atomistic Scale Study on Effect of Crystalline Misalignment on Densification During Sintering Nano Scale Tungsten Powder,” Advances in Sintering Science and Technology, Ed. R. K. Bordia and E. A. Olevsky, The American Ceramic Society, 2010.</ref> <br> [[Image:100Moleculardynamics.gif]]
  
 
== Electronic Scale Animations ==
 
== Electronic Scale Animations ==
 +
 +
<!-- Before editing this page please visit this tutorial. https://icme.hpc.msstate.edu/mediawiki/images/0/03/How_to_Convert_to_GIF_and_Upload_to_ICME.pdf -->
  
 
== References ==
 
== References ==
  
 
<references/>
 
<references/>
 +
 +
[[Category:Structural Scale]]
 +
[[Category:Macroscale]]
 +
[[Category:Mesoscale]]
 +
[[Category:Microscale]]
 +
[[Category:Nanoscale]]
 +
[[Category:Electronic Scale]]
 +
[[Category:ABAQUS]]
 +
[[Category: Hydroforming]]
 +
[[Category: Steel]]
 +
[[Category: Aluminum]]
 +
[[Category: Nickel]]
 +
[[Category: Magnesium]]

Latest revision as of 15:09, 14 March 2016

Contents

[edit] Astronomical Scale Animations

[edit] Geoscale Animations

TERRA2D mantle convection simulation using ISV material model: [1]
Animation-ICMEweb.gif

[edit] Structural Scale Animations

A comparative study of design optimisation methodologies for side-impact crashworthiness, using injury-based versus energy-based criterion:[2]
110Rendummycrash.gif

Dodge Neon side impact:[2]
120neonsideimpact.gif

Dodgeneoncrunch.gif [3]

Finite element simulation of a side impact Nissan quest van: [1]
Nissansideimpact1.gif

Dodge Neon front impact:[2]
Front impact.gif

Finite element analysis of a front end BMW crash showing the dummy strike to the airbag [1]
BMWfrontcrash.gif

Crash of an all steel vehicle[1]
PNGV.vehicle.gif

Pam crash front end simulation of a dodge neon impact. [4]
Pamcrashdodge.gif

Neon96 front end offset crash. [5]
Neon96Offset.gif

Neon96 front end crash. [6]
Neon96Frontal.gif

Neon96 side impact crash. [6]
Neon96Side.gif

Finite element analysis of bus impact:
Finite element champion bus side impact.gif

Magnesium Corvette cradle finite element simulation showing the design stresses. [1]
Cradle.gif

Finite element simulation of a Cadillac a356 aluminum cast control arm illustrating fracture location.
[7]
Controlarms2.gif

A study on the effect of impacts to the head in a football helmet:
HelmetHeadImpactv3.gif

NOCSAE drop test of Riddell 360 Football helmet with and without face mask attached by Alston Rush (RPPS):
Rawlings-Combined 32Percent.gif

NOCSAE drop test of Rawlings Quantum Plus Football helmet with and without face mask attached by Alston Rush (RPPS):
Riddell-360-Combined 32Percent.gif

Bat to ball impact:[1]
Bat impact.gif

A study on the structure and mechanical behavior of the Terrapene carolina carapace:A pathway to design bio-inspired synthetic composites[8]:


120turtlepaper2009.gif


High strain rate deformation of polycarbonate. Shown as a difference image between successive frames, so movement triggers an intensity other than gray:
PC 2 difference.gif

High strain rate deformation of polycarbonate:
PC 2 lowres.gif

Tube forming process from sheet steel:
Animation ICME5.gif

Pressure wave propagation at hyoid bone:
Hyoid pressure.gif

A7 steel tension test performed on an Instron 5882:
A7 Tension.gif

A study on the effects of blast loading and failure of a building exterior cladding and its column collapse: [9]


      Femaframe g1.gif


Femaframe s1.gif



A simulation using Active Mesh Refinement to model spalling of metal from 2D penetrating fragment and 3D bullet impact:

Frag pen.gif

Bullet 1.gif


A simulation of high velocity bullet impacting a square composite plate:

Bullet-rate.gif

Internal State Variable Plasticity Damage Modeling of Copper Tee-Shaped Tube Hydroforming Process[10]
Hydroforming-Isdyna-profile.gif

A different viewpoint[10]
Hydroforming-Isydna-iso.gif

One more viewpoint[10]
SideHydroforming.gif

CTH simulation showing a bullet penetrating a metal armor[1]
Matsbullet.gif

Application of internal state variable plasticity and damage models to welding[11]
Welding.gif

Finite element simulation of Columbia Space Shuttle foam impact on the graphite-epoxy composite nose cone[1]
130ks.gif

Finite element simulation of Columbia Space Shuttle foam impact on the foam panels[1]
Columbiaedge.gif

CTH simulation of Chicxulub meteor strike[12]
Meteorimpact1.gif

A rock going through the groove of a tire simulation on a road[1]
TIRE.gif

Finite element simulation of the front edge of the Des Moines ice sheet showing surging[13]
IceSurfaceGliding.gif

Simulation of the temperature excursions for a powder metal experiencing a LENS process.[14]
LENStemperature.gif

Finite element simulation of a door stamp process[1]
Optris.gif

Hydrodynamic Modeling of Impact Craters in Ice [15]
CTHimpactingice.gif

Studying the Impact of a Meteor [1]
CTHmeteorpress.gif CTHmeteor.gif

Ice Copper Impact [16]
Ice.copper.impact.cth.gif

Ford Truck Running into a Barrier [17]
Ford800R BI.gif

Friction Stir Weld Fatigue Crack [18]
Friction.stir.weld.mag.crack.gif

[edit] Macroscale Animations

Notch Tensile Test[19]
Notchtensiletest.gif

Three-Dimensional Statistical Void Analysis of AM60B Magnesium using CT Imagery [20]
Xraynotchedside.gif

Gray cast iron being pulled in tension in an EVO-SEM
GCI crack propagation.gif

[edit] Mesoscale Animations

Finite element shock wave progression showing decohesion at grain boundaries with an initial void.[1]:
10GBHOLE.gif

Damage Modeling of A356 Aluminum[21]
USCARmicromechanics.gif

Crystal plasticity finite element simulation showing a void growing under a uniaxial tension. [22]
FEA(abaqus).gif

Crystal plasticity calculation of crack microstructurally small crack growth in an aluminium alloy [23]
Xtal.plasticity.gif

Experimental observation of void coalescence illustrating void sheeting and localization of nickel showing the strain contours. [24]
Lavision.gif

Finite element simulation of a columnar growth of a dendrite.[25]
Dendritecolumn.gif

A mechanism based Thermomechanical Cohesive Zone Approach For Modeling Ductile Fracture [26]
Crack.growth.gif

A finite element simulation of a void nucleation simulation showing the debonding of aluminium from the silicon particle. (Reference Info Pending)
Particle.voidnuc.gif Al.si.zoom.gif

[edit] Microscale Animations

left‎ [27]


A Multiscale Model of Plasticity Based on Discrete Dislocation Dynamics[28]:
Dd.dipole.gif DDOneFrSmall.gif DDpureEDGE.gif Dd.110PrismaticLoop.gif DDpileupaboundary.gif DDImpact.gif

[edit] Nanoscale Animations

On the Growth of Nanoscale Fatigue Cracks [29]
Fatiguemd101.gif

Nanostructurally Small Cracks (NSC): A Review of Atomistic Modeling of Fatigue [30]
Fatiguemd100.gif

Nanostructurally Small Cracks (NSC): A Review of Atomistic Modeling of Fatigue [30]
EAMfatigue111.gif

An Atomistic Study of Size Scale Effects on Void Growth in Single and Polycrystalline Nickel [31]
Run3bsmall.gif

A molecular dynamics study of void growth and void coalescence in single crystal nickel[32]
Voidtension.gif

Atomistic Simulations of Bauschinger Effects of Metals with High Angle and Low Angle Grain Boundaries[33]:
EAM.Free HiGB Dfgrd.gif

[33]
EAM.centro.tension (1).gif

Atomistic simulation of an imploding copper ring[34]
Cu1.gif

Atomistic simulation of an imploding aluminum ring.[34]
Al134.gif

 Tensile Loading of an Aluminum Single Crystal.  Movie showing deformation of single crystal aluminum loaded in the <100> direction at a strain rate of 1010 s-1 and a temperature of 300 K.

 Polymer Atomistic Research.  Movie showing deformation of an amorphous polyethylene structure with 20 chains of 1000 monomers length.  The strain rate is 1010 s-1 and the temperature is 100 K[35][36].

Atomistic Scale Study on Effect of Crystalline Misalignment on Densification During Sintering Nano Scale Tungsten Powder [37]
100Moleculardynamics.gif

[edit] Electronic Scale Animations

[edit] References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 Unpublished
  2. 2.0 2.1 2.2 Horstemeyer, M.F.; X.C. Ren; H. Fang; E. Acar; P.T. Wang, "A comparative study of design optimisation methodologies for side-impact crashworthiness,using injury-based versus energy-based criterion," International Journal of Crashworthiness, 1754-2111, Vol. 14, No. 2, April 2009, 125–138. --link
  3. H. Fang, K. Solanki, M.F. Horstemeyer, “Numerical simulations of multiple vehicle crashes and multidisciplinary crashworthiness optimization,” International Journal of Crashworthiness, Vol. 10 (2), pp. 161-171, 2005.
  4. Horstemeyer, M.F., Yang, N., Gall, K.A., McDowell, D.L., Fan, J., and Gullett, P., “High Cycle Fatigue on a Die Cast AZ91E-T4 Magnesium alloy,” Acta Materialia, Vol. 52, pp. 1327-1336, 2004.
  5. H. Fang, K. Solanki, M.F. Horstemeyer, “Numerical simulations of multiple vehicle crashes and multidisciplinary crashworthiness optimization,” International Journal of Crashworthiness, Vol. 10 (2), pp. 161-171, 2005.
  6. 6.0 6.1 Fang, H., Rais-Rohani, M., Liu, Z., Horstemeyer, M.F., “A Comparative Study of Metamodeling Methods for Multiobjective Crashworthiness Optimization,” Computers and Structures, Vol. 83/25-26, pp. 2121-2136, 2005.
  7. Horstemeyer, M.F., Osborne, R., and Penrod, D., “Microstructure-Property Analysis and Optimization of a Control Arm, American Foundary Society, AFS Transactions, 02-036, pp. 297-314, 2002.
    Horstemeyer, M.F., Integrated Computational Materials Engineering (ICME) for Metals: Reinvigorating Engineering Design with Science, Wiley Press, 2012.
    Yin, X., Lee, S., Chen, W., Liu, W.K., Horstemeyer, M.F. “A multiscale design approach with random field representation of material uncertainty,” 2008 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC 2008, v 1, n PART A, p 113-122, 2009, 2008 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC 2008.
  8. H. Rhee, M.F. Horstemeyer,Y. Hwang,H. Lim,H. El Kadiri, W. Trim "A study on the structure and mechanical behavior of the Terrapene carolina carapace:A pathway to design bio-inspired synthetic composites," Materials Science and Engineering,29 (2009) 2333–2339--link
  9. Wince, J. [1] and Vaughan, D., Development of High Fidelity Physics Based Fast Running Model for Progressive Collapse Assessment of Above Ground Fixed Structures, Proceedings of the AIAA Missile Science Conference, November 2006.
  10. 10.0 10.1 10.2 Crapps, J., Marin, EB, Horstemeyer, MF, Yassar, R, and Wang, PT, "Internal State Variable Plasticity Damage Modeling of Copper Tee-Shaped Tube Hydroforming Process," J. Matls. Proc. Tech, ASME, 1726-1737, 2010.
  11. Dike, J.J.; Ortega, A.R.; Bammann, D.J.; Lathrop, J.F., "Application of internal state variable plasticity and damage models to welding," June 1997.
  12. Mowry, J.L., "High Strain Rate Finite Element Simulations," Mississippi State University, August 2007.
  13. Sherburn, M. S., Horstemeyer, M. F., Solanki, K., "Simulation Analysis of Glacial Surging in the Des Moines Ice Lobe, 2008"
  14. Wang, L., Pratt, P, Felicelli, S, El Kadiri, H, Berry, J., Wang, P, and Horstemeyer, MF, “Pore Formation in Laser-Assisted Powder Deposition Process,” J. Manuf. Sci. Eng.,Volume 131, Issue 5, 051008, 2009
  15. Sherburn, J and Horstemeyer, MF, Hydrodynamic Modeling of Impact Craters in Ice, Int J. Impact Engineering, Vol. 37, No.1 , pp. 37-46, 2010.
  16. Sherburn, J and Horstemeyer, MF, Hydrodynamic Modeling of Impact Craters in Ice, Int J. Impact Engineering, Vol. 37, No.1 , pp. 37-46, 2010.
  17. Horstemeyer, M.F., Solanki, K., and Steele, W.G. Uncertainty Methodologies to Characterize Damage Evolution Model, Plasticity 2005, Kauai (Hawaii), Jan 4-8, 2005.
  18. Jordon, JB, Horstemeyer, M.F.; Grantham, J.; Badarinarayan, H., “Fatigue evaluation of friction stir spot welds in magnesium sheets,” Magnesium Technology, p 267-271, 2010, Magnesium Technology 2010.
  19. Horstemeyer, M.F., Gall, K.A., Dolan, K., Haskins, J., Gokhale, A.M., and Dighe, M.D., "Numerical, Experimental, and Image Analyses of Damage Progression in Cast A356 Aluminum Notch Tensile Bars," Theoretical and Applied Fracture Mechanics. v 39, n 1, p 23-45, 2003.
  20. Amy M. Waters, Harry E. Martz, Kenneth W. Dolan, Mark F. Horstemeyer, and Robert E. Green Jr. “Three-Dimensional Statistical Void Analysis of AM60B Magnesium using CT Imagery,” Journal for American Society for Nondestructive Testing: Materials Evaluation, Vol. 58, No. 10, p. 1221, 2000.
  21. Horstemeyer, M.F., Integrated Computational Materials Engineering (ICME) for Metals: Reinvigorating Engineering Design with Science, Wiley Press, 2012.
  22. Potirniche, G.P., J. L. Hearndon, M. F. Horstemeyer, X. W. Ling. Lattice orientation effects on void growth and coalescence in fcc single crystals. International Journal of Plasticity, Vol. 22, No. 5, May, 2006, pp. 921-942, May 2006.
  23. Johnston, S., Potirniche, G.P., Daniewicz, S.R., Horstemeyer, M.F., “Three-Dimensional Finite Element Simulations of Microstructurally Small Fatigue Crack Growth in 7075 aluminum alloy,” Fatigue Fract Engng Mater Struct, Vol. 29, pp. 597-605, 2006.
  24. Jones, MK., Horstemeyer, MF., Belvin, AD, “A Multiscale Analysis of Void Coalescence in Nickel,” JEMT, Vol. 129, pp. 94-104, 2007.
  25. Acta Materialia Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods Yin Felicelli L Wang. May 2011
  26. Klein, P.A.; Bammann, D.J.; McFadden, S. X.; Foulk, J. W.; Antoun, B. R.; "A Mechanism-Based Thermomechanical Cohesive Zone Approach for Modeling Ductile Fracture," 2003.
  27. Raabe, Dierk. Discrete Dislocation Dynamics Simulations (DDD)
  28. Zbib, H.M.; De La Rubia, T.D.; Bulatov, V, "A Multiscale Model of Plasticity Based on Discrete Dislocation Dynamics," January 2002.
  29. Potirniche, G.P., Horstemeyer, M.F., “On the Growth of Nanoscale Fatigue Cracks,” Phil. Mag. Letters, Vol. 86, No. 3, pp. 185-193, 2006.
  30. 30.0 30.1 Horstemeyer, M.F., Tang, T., Kim, S., Potirniche, G., and Farkas, D., “Nanostructurally Small Cracks (NSC): A Review of Atomistic Modeling of Fatigue,” Int. J. Fatigue, Vol. 32, Issue 9, pp. 1473-1502, 2010.
  31. Gullett, P.M., Wagner, G.J., Horstemeyer, M.F., Potirniche, G.P., Baskes, M.I., “An Atomistic Study of Size Scale Effects on Void Growth in Single and Polycrystalline Nickel,” 3rd Int. Conf. Computational Modeling and Simulation of Materials, Portugal, Spain, June 2004.
  32. Potirniche, G.P., M. F. Horstemeyer, G. J. Wagner, P. M. Gullett. A molecular dynamics study of void growth and void coalescence in single crystal nickel. International Journal of Plasticity, Vol. 22, No.2, pp. 257-278, Feb, 2006.
  33. 33.0 33.1 H. Fang, M.F. Horstemeyer, M.I. Baskes, K. Solanki, “Atomistic Simulations of Bauschinger Effects of Metals with High Angle and Low Angle Grain Boundaries,” Computational Methods in Applied Mechanics and Engineering, Vol. 193, p. 1789-1802, 2004.
  34. 34.0 34.1 K. Solanki, M.F. Horstemeyer, M.I. Baskes, H. Fang, “Multiscale Study of Dynamic Void Collapse in Single Crystals,” Mechanics of Materials, Vol. 37, pp. 317-330, 2005.
  35. Hossain, D., Tschopp, M.A., Ward, D.K., Bouvard, J.L., Wang, P., Horstemeyer, M.F.,"Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene," Polymer, 51 (2010) 6071-6083.
  36. Tschopp, M.A., Ward, D.K., Bouvard, J.L., Horstemeyer, M.F., "Atomic Scale Deformation Mechanisms of Amorphous Polyethylene under Tensile Loading," TMS 2011 Conference Proceedings, accepted.
  37. Moitra, A., Kim, S., Kim, S.G., Park, S.J., German, R., and Horstemeyer, M.F., “Atomistic Scale Study on Effect of Crystalline Misalignment on Densification During Sintering Nano Scale Tungsten Powder,” Advances in Sintering Science and Technology, Ed. R. K. Bordia and E. A. Olevsky, The American Ceramic Society, 2010.
Personal tools
Namespaces

Variants
Actions
home
Materials
Material Models
Design
Resources
Projects
Education
Toolbox