Python RBFN
From EVOCD
RBFN Settings
- RBFN().c - float, c value used by the basis functions in the calculations of weight factors (default c=0.5).
- RBFN().rbf_type - string, type of radial basis function to use, options are "ThinPlate", "Gaussian", "Multiquadric", "InvMultiquadric", and "InvGaussian" (default is "Multiquadric")
- RBFN().trainsets - integer, number of data sets to be used to train the surrogate model, the remaining sets will be used for model validation (default is 1)
- RBFN().errform - string, form of error to be used in validation, options are "rmse" and "avg" (default is "rmse")
Built in Functions
- RBFN().get_data(datafile,pointfile)
- datafile - string, filename (or path) to file containing the data to be used for training. This is a *.csv file with each explicit dataset as columns. Each column is the y-data for each parameter set in the pointfile.
- pointfile - "string", filename (or path) to file containing the design points for training. This is a *.csv file with each parameter set as rows (m samples by n parameters).
- This function reads the files and returns x, y, and points.
- RBFN().hypercube_norm(points)
- points - m x n array, m inputs by n parameters. These are the points used to explore the model input space.
- This function maps the input parameters of points to the range [0,1] for each input parameter column using maximum and minimum values. It returns the normalized points in an m x n array.
- RBFN().optimize(y,points)
- y and points array returned by RBFN().get_data(datafile,pointfile)
- Uses scipy.optimize.minimize to minimize the validation error of the RBFN surrogate. Only functions if there some datasets are reserved for model validation by setting RBFN().trainsets to be less than the number of datasets available.
- Once optimized, the RBFN is ready to make predictions without having to call the RBFN().train method.
- RBFN().train(y,points)
- y and points array returned by RBFN().get_data(datafile,pointfile)
- Uses scipy.optimize.minimize to minimize the validation error of the RBFN surrogate. Only functions if some datasets are reserved for model validation by setting RBFN().trainsets to be less than the number of datasets available.
- RBFN().predict(test)
- target 1 x n NumPy array
- Function used to predict the behavior of the test point. Returns a vector of data the same length as the data used to train it.
- RBFN().report()
- Reports current RBFN settings, and if trained, the current validation error
Python Code Implementation
Copy the code below. Use this RBFN from another script by using "import RBFN"
''' Radial Basis Function Network (RBFN) class ''' Copyright (c) 2018 Justin M. Hughes Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import numpy as np from scipy.optimize import minimize class RBFN: def __init__(self): self.c = 0.5 self.rbf_type = 'Multiquadric' self.lda = [] self.training_data = [] self.target_data = [] self.training_points = [] self.target_points = [] self.valerr = 'NA' self.trainsets = 1 self.errform = 'rmse' def report(self): print("\n----- Radial Basis Function Network -----") print("rbf_type : %s" %self.rbf_type) print("trainsets : %s" %self.trainsets) print("c : %s" %self.c) print("errform : %s" %self.errform) print("valerr : %s\n" %self.valerr) def split(self,ydata,points): self.training_data = ydata[:,:self.trainsets] self.target_data = ydata[:,self.trainsets:] self.training_points = points[:self.trainsets,:] self.target_points = points[self.trainsets:,:] def get_norm(self,vec): # Returns the 2-norm (Euclidean distance) of vec a = 0 for i in range(0,len(vec)): a += vec[i]**2.0 if a == 0: return 0 else: return np.sqrt(a) def get_phi(self,r,c,rbf_type): if rbf_type == 'ThinPlate': if r==0: return 0 else: return np.log(c*r)*r*r # 1 Thin Plate elif rbf_type == 'Gaussian': # 2 Gaussian return np.exp(-1.0*c*r*r) elif rbf_type == 'Multiquadric' or rbf_type == 'InvMultiquadric': phi = np.sqrt(r*r + c*c) # 3 Multiquadric if rbf_type == 'InvMultiquadric': phi = 1.0/phi # 4 Inverse Multiquadric return phi elif rbf_type == 'InvGaussian': return 1.0/np.exp(-1.0*c*r*r) # 5 Inverse Gaussian elif rbf_type == 'Custom': phi = np.sqrt(r*r + c*c) return np.sqrt((phi**2.0 + (1.0/phi)**2.0)/2.0)# custom def lda_matrix(self,x,y): # Get number of training points and parameters n = x.shape[0] y = y.T #Set up phi storage variable A = np.zeros((n,n)) # Get phi matrix (radii) for i in range(0,n): for j in range(0,n): r = self.get_norm(x[j,:]-x[i,:]) A[i,j] = self.get_phi(r,self.c,self.rbf_type) self.lda = np.zeros((y.shape[0],y.shape[1])) # Solve for lambda for i in range(0,len(y[0,:])): try: self.lda[:,i] = np.dot(np.linalg.inv(A),y[:,i]) except: #print "Phi matrix is singular, using pseudoinverse..." self.lda[:,i] = np.dot(np.linalg.pinv(A),y[:,i]) def predict(self,x_test): # normalize each dimension to hypercube x_test = x_test.reshape(1,len(x_test)) y_pred = np.zeros((self.lda.shape[1],1),dtype=float) #Get RBFN prediction for test point at each x for j in range(0,len(self.lda[0,:])): for i in range(0,len(self.lda[:,0])): r = self.get_norm(x_test[0,:] - self.training_points[i,:]) phi = self.get_phi(r,self.c,self.rbf_type) y_pred[j,0] += self.lda[i,j]*phi return y_pred def hypercube_norm(self,points): pmax = np.nanmax(points,axis=0) pmin = np.nanmin(points,axis=0) return (points-pmin)/(pmax-pmin) def train(self,ydata,points): self.split(ydata,points) self.lda_matrix(self.training_points,self.training_data) self.pred_err() def get_data(self,filename,doe_points): data = np.genfromtxt(filename,delimiter=',',skip_header=1) xdata = np.array(data[:,0]).reshape(len(data[:,0]),1) ydata = np.array(data[:,1:]) doe = np.genfromtxt(doe_points,delimiter=',',skip_header=1) sets = len(ydata[0,:]) return xdata,ydata,doe def get_err(self,test,true): diff = [] for i in range(0,len(test)): diff.append((float(test[i]-true[i])/true[i])) if self.errform == 'avg': return np.abs(np.nanmean(diff)) elif self.errform == 'rmse': diff = [x**2.0 for x in diff] sumdiff = np.nansum(diff) return np.sqrt(sumdiff/len(diff)) def pred_err(self): err = [] for i in range(0,self.target_points.shape[0]): x_test = self.target_points[i,:] ypred = self.predict(x_test) err.append(self.get_err(list(ypred),list(self.target_data[:,i]))) self.valerr = np.nanmean(err) def cvalminfunc(self,cval,*args): self.c = cval ydata,points = args self.train(ydata,points) err = self.valerr if cval < 0.0 or cval > 1.0: return 1.0e06 else: return err def optimize(self,ydata,points,method='Nelder-Mead',tol=1e-06): print("Optimizing RBFN c value. Please wait...") c0 = 0.5 args = (ydata,points) minerr_cval = minimize(self.cvalminfunc,c0,args,method=method,tol=tol) print(minerr_cval) self.c = float(minerr_cval.x) self.train(ydata,points)