A mesomechanics parametric finite element study of damage growth and coalescence in polymers using an ElastoviscoelasticViscoplastic internal state variable model
Contents 
Licensing
The content of this page was reproduced with permission from Elsevier and Mechanics of Materials License No. 3815371158759
AbstractA splitlevel factorial design of experiments (DOE) parametric study using a twodimensional mesoscale Finite Element Analysis (FEA) was executed to elicit the most essential aspects pertaining to void/crack growth and void/crack coalescence in polymers above the glass transition temperature. The FEA was coupled to a physically based, strain rate and temperature dependent, elastoviscoelasticviscoplastic internal state variable polymer model that was calibrated to physical experiments. The DOE method examined the relative influences of seven independent parameters related to mechanics (stress state, strain rate, and temperature) and materials science (polymer blend, number of initial defects, defect type, and initial microporosity—also called the subscale free volume) with respect to both void/crack growth and void/crack coalescence in polymers. The results of the DOE algorithm clearly illustrated that the stress state and applied strain rate were the most critical factors affecting void/crack growth. For void/crack coalescence, the stress state and number of defects were the crucial parameters. The conclusions of this study gives insight for the development of a macroscale damage model for polymers. AuthorsW. B. Lawrimore II, D. K. Francis, J. L. Bouvard, Mark F. Horstemeyer PublicationMechanics of Materials 96 ^{[1]}
MethodologyThis study compares the relative parametric influences between the chosen parameters on damage growth and coalescence in polymers. Having seven parameters quantified at two levels yields 128 () unique simulations (one for each possible parameter grouping). The DOE technique is essentially a tool that selects a minimum spanning set for the simulation space based on some criteria. The DOE method creates a linear mapping from a set of influences, {A}, to a set of responses, {R}, through a parameter matrix, {P} corresponding to the orthogonal array with
where:
By inverting the equation, one can solve for {A}:
The Taguchi logarithmic parametric array is shown below:
Material ModelA physicallybased, rate and temperature dependent ISV model for polymers developed by Bouvard et al. (2013)^{[2]} was used to accurately represent both ABS and PC. The ISV model was calibrated to physical experiments at a variety of temperatures and strain rates for both materials. The constitutive model features three ISVs to account for inelastic dissipation mechanisms in polymers. is a strainlike scalar that accounts for dissipation induced from polymer chain entanglement points. is a strainlike scalar that represents material hardening resulting from polymer chain alignment and coiling at large strains. Lastly, is a strainlike tensor that accounts for hardening induced by polymer chain orientation and stretching at large strains. The ISV model calibrations to physical experiments are shown below.
Finite Element Results
Parametric Results
SummaryA DOE parametric study was conducted to discover the crucial influence parameters affecting damage growth and coalescence in polymers. The parametric study employed a finite element analysis coupled with an experimentally calibrated time and temperature sensitive elastoviscoelasticviscoplastic ISV model for polymers. The analysis revealed that the stress state that induced a particular stress triaxiality was the most important parameter for damage growth. Researchers have argued that viscoelastic materials, such as the structural polymers represented in this study, have a strong strain rate and time sensitivity. Although these polymers do exhibit a strain rate and time sensitivity, the mechanism that induces void growth and coalescence the strongest is a large stress triaxiality arising from an elevated applied stress state with secondary contributions from the material having a larger yield stress and a higher temperature. References
