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This paper describes a numerical, hierarchical multiscale modeling
methodology involving two distinct bridges over three different
length scales that predicts the work hardening of face centered
cubic crystals in the absence of physical experiments. This
methodology builds a clear bridging approach connecting nano-,
micro- and meso-scales. In this methodology, molecular dynamics
simulations (nanoscale) are performed to generate mobilities for
dislocations. A discrete dislocations numerical tool (microscale)
then uses the mobility data obtained from the molecular dynamics
simulations to determine the work hardening. The second bridge
occurs as the material parameters in a slip system hardening law
employed in crystal plasticity models (mesoscale) are determined
by the dislocation dynamics simulation results. The material
parameters are computed using a correlation procedure based on
both the functional form of the hardening law and the internal
elastic stress/plastic shear strain fields computed from discrete
dislocations. This multiscale bridging methodology was validated
by using a crystal plasticity model to predict the mechanical
response of an aluminum single crystal deformed under uniaxial
compressive loading along the [421] direction. The computed
strain-stress response agrees well with the experimental data.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the mid-1960s, Brown (1964), Bacon (1967) and Foreman (1967) established the framework to
characterize the curvature of a line of dislocation under an applied stress. In the late 1970s, Kocks and
d. All rights reserved.

. Horstemeyer).

mailto:mfhorst@cavs.msstate.edu
http://www.sciencedirect.com/science/journal/07496419
http://www.elsevier.com/locate/ijplas


S. Groh et al. / International Journal of Plasticity 25 (2009) 1456–1473 1457
Mecking (1979) proposed one of the first attempts of crystal plasticity models linking plasticity to
microstructure (population of dislocations). Their model was physically-based and derived from the
total dislocation density stored in a material. The associated assumptions included an unidirectional
model, a homogeneous deformation state, and, if a polycrystal, all of the grains must be oriented along
the same direction to have a homogenous plastic deformation. These dislocation-based studies, among
others, played a part on the development of the Discrete Dislocation (DD) approach, a numerical tool
based on linear elasticity that links the properties of a single dislocation to the collective behavior of
dislocations (hardening), as proposed for two-dimensional problems by Amadeo and Ghoniem (1990)
and Canova and Kubin (1991). As such, it is clear that the properties of a single dislocation can be
linked to a dislocation-based Crystal Plasticity (CP) model using DD. Development of dislocation-based
hardening rules has been pursued by many authors. Le and Stumpf (1996) presented an elastoplastic
model that takes into account the motion of continuously distributed dislocations. Later, Langlois and
Berveiller (2003) proposed a dislocation based model motivated from evolving microstructure for
metals under monotonic and sequential loading. Hiratani et al. (2003) developed a model for ther-
mally activated dislocation glide. Shizawa and Zbib (1999) proposed a thermodynamically-motivated
theory of gradient elastoplasticity based on a dislocation density tensor, theory that was applied to
model dislocation reactions between geometrically necessary dislocations (GNDs) and immobile
dislocations (Shizawa and Zbib, 2001). Aoyagi and Shizawa (2007) developed a multiscale crystal
plasticity model based on GND density and lattice incompatibility to establish a numerical method
for fine-graining of a polycrystal. Shenoy et al. (2008) proposed a hierarchical multiscale framework
linking a crystal plasticity model to a macroscopic internal state variable model. With their approach,
the microstructure-dependence of the macroscale model parameters are identified at the crystal
plasticity level.

The multiscale analysis presented in this work used as a basis the dislocation-based hardening
model of Kocks and Mecking (2003), a model derived from the storage-recovery framework developed
in scalar form by Kocks and Mecking (1979, 2003) and by Mecking and Estrin (1987). This model as-
sumes that all the slip systems harden at the same rate and, therefore, the interactions between dif-
ferent slip systems are averaged in a Taylor sense. Extensions of this model to account for slip system
interactions (matrix form) were carried out by Teodosiu et al. (1993). Within this extended storage-
recovery framework, the hardening law was modified to predict the three stages behavior of a single
crystal initially stretched in single slip (Tabourot et al., 1997; Fivel et al., 1998). The extended model
predicted the main characteristics of single crystal and polycrystal deformation during monotonic and
sequential loading tests. In this study, the interactions among the different slip systems were explic-
itly represented using an interaction coefficient matrix (Franciosi, 1985), where the value of the coef-
ficients were extracted using DD simulations. Such extraction has been performed for fcc materials by
Fivel (1997), Madec et al. (2003a,b) and Devincre et al. (2006), while for bcc materials in the athermal
regime by Queyreau et al. (2008). Preußner et al. (2008) proposed a physics-based constitutive law,
which allows describing the creep behavior of single crystal alloys by mutual interaction of disloca-
tions on different slip systems, with an emphasis on the evolution of the dislocation density. Their
model described well the first two stages of creep. A study related to the multiscale modeling of met-
als is presented by Ohashi et al. (2007), who used a multiscale modeling approach to model the scale-
dependent characteristics of mechanical properties of metallic polycrystals. These authors proposed to
modify the hardening law of a dislocation based crystal plasticity model (Ohashi, 1994) according to
the minimum shear stress needed to emit a dislocation loop into a confined system calculated by DD
simulations (Zbib and Diaz de la Rubia, 2002). Using such a multiscale approach, Ohashi et al. (2007)
were able to reproduce a variation of the macroscopic yield stress as a function of the grain size.

The present work aims at describing a numerical multiscale framework connecting three disparate
length scales (nano-, micro- and meso-scales) to determine the material parameters of a slip system
hardening law expressed in a storage-recovery format. This hardening rule is then used in a crystal
plasticity model to predict the deformation of an aluminum single crystal under uniaxial compression
along the [421] direction. Validation experiments are available to assess the predictive capability of
the approach. The presentation of the work is organized as follows. Section 2 gives the theoretical con-
cept of the framework with an identification of the material parameters linking the different scales.
Section 3 describes the simulation models used at each length scale to obtain the materials parame-
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ters, while Section 4 presents the procedure to extract the value of those different parameters and a
comparison to experimental data. Then, Section 5 gives a sensitivity study of the numerical results to
the material parameters used by the flow rule. Finally, the last section states the concluding remarks.

2. Description of the hierarchical modeling approach

As the crystal plasticity model used in this study has already been presented previously (Marin and
Dawson, 1998; Marin, 2006), this section mainly focuses on describing the flow rule and the hardening
law employed in the model, the identification of the associated plasticity parameters, and the theoret-
ical description of the method used to extract the hardening parameters from simulations at a lower
length scale using DDs. Furthermore, this section also identifies the material parameters needed at the
DD level and the corresponding methodology to calculate them at a lower length scale using Molec-
ular Dynamics (MD).

At conventional ‘quasi-static’ strain rates, the localized obstacles to dislocation glide in fcc materi-
als are mainly overcome by thermal activation. In such a case, the kinetics of dislocation motion is jer-
ky, determined by the waiting time for thermal activation (Kocks et al., 1975). This description of the
kinetics of dislocation motion (or the mean dislocation velocity) leads to a hyperbolic sine or exponen-
tial dependence on the resolved shear stress (Teodosiu and Sidoroff, 1976). If one assumes that the
average dislocation velocity of each slip system follows the same law, the combination of the disloca-
tion velocity equation given by Teodosiu and Sidoroff (1976) with Orowan’s law produces a power law
relationship for the kinetics of plastic flow on the a-slip system (Fivel, 1997),
_ca ¼ _c0
sa

ja

� �1=m

ð1Þ
Here, sa is the applied shear stress on the a-slip system, _ca is the shear strain rate, m is the strain rate
sensitivity exponent, _c0 is a reference shear strain rate, and ja is the slip system strength or hardness.
Using the theory of thermally activated glide, Fivel (1997) and Fivel et al. (1998) derived the strain rate
sensitivity exponent and the reference shear rate as a function of temperature,
m ¼ kT

alb2d
and _c0 ¼ qmb2mD exp

�DG0

kT

� �
ð2Þ
where k is the Boltzmann constant, T is the temperature, l is the shear modulus, a is the average
strength of the forest, b is the magnitude of the Burgers vector, d is a distance to bypass the obstacle,
nD is the Debye frequency, rm is the density of mobile dislocations, and DG0 is the energy stored in the
material when an obstacle is bypassed by a dislocation. Typically, d is in the order of 4b while DG0 is
between 0.15lb3 and 0.25lb3. Also, at ambient temperature, m is approximately 0.005 and _c0 is be-
tween 10�16 s�1 and 10�6 s�1. For the numerical simulations presented in this work, the values of
m and _c0 are increased in order to improve the numerical convergence during the integration of the
crystal plasticity equations. Since in fcc materials the yield stress is not as strongly affected by the
temperature as the hardening is, the strain rate sensitivity is artificially increased to 0.05 (Li, 2008).
In addition, the reference strain rate is increased to the phenomenological value of 10�3 s�1. A sensi-
tivity study of the predicted mechanical behavior from the multiscale methodology to the strain rate
sensitivity and to the reference strain rate is presented in Section 5.

The specific form of the slip system hardening rule, which follows the hardening-recovery format
proposed by Kocks and Mecking (2003), is developed assuming that all slip systems harden at the
same rate (isotropic self-hardening), i.e., ja = j for all a-slip systems. This assumption results in the
following scalar form for the evolution law of j (see Marin, 2006 for details)
_ja ¼ h0
js � j
js � j0

� �X
a

_caj j ð3Þ
where j0 is the initial strength, js is the saturation strength, and h0 is the initial hardening rate. These
parameters are characteristics of the material and describe its micro-structural properties. In essence,
this hardening law assumes that hardening is mainly controlled by the competition of storage and anni-
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hilation of statistically stored dislocations and its derivation implicitly assumes an average interaction
among dislocations gliding on different slip systems. Note that latent hardening, i.e. the matrix form of
the above evolution law, is not considered in this formulation. As such, with only self-hardening, the
framework will mainly capture first-order hardening effects. Besides, this assumption also reduces
the numerical computations with the crystal plasticity model as only one hardening equation needs
to be integrated at each computational point. This hardening-recovery treatment of dislocation-based
hardening has been well-established in the literature where Armstrong and Frederick (1966) first estab-
lished the evolution of dislocation density in a hardening-recovery format. Later, Kocks (1970) and Bam-
mann (1981, 1984) related the hardening-recovery equations to dislocation motion in an internal state
variable context showing the temperature, strain rate, and path history effects. Many other crystal plas-
ticity formulations employed such a formulation as well (c.f., Horstemeyer et al., 2005).

It is important to mention that Eqs. (1) and (3) rely on three main simplifications: (i) the interac-
tions between moving dislocations and dislocation forest are the only mechanism for resistance to dis-
location glide, (ii) a sufficient number of active slip system exist to allow uniform deformation, and
(iii) there is no shortage of mobile dislocations. These assumptions are satisfied reasonably well by
a pure FCC metal deformed under conditions in which there are no rapid changes in the deformation
path (Estrin, 1996). These equations have been effectively employed to predict the deformed shape
and the orientation changes in a fcc single crystal (Marin, 2006). Also, the scalar form of the hardening
law has been successfully applied to predict the deformation of metals such as copper (Estrin and
Mecking, 1984) and aluminum (Estrin, 1998).

In general, the material parameters in the hardening and flow rules are determined by correlating
the model’s predicted stress–strain response with experimental stress–strain curves. However, in this
work we suggest that, in the absence of physical experiments, the present formulation can compute
the material parameters of the hardening law, (h0,js,j0), using a micro-scale approach based on DD
simulations (Zbib et al., 1998; Ghoniem and Sun, 1999; Devincre et al., 2001; Madec et al., 2001). Dis-
crete dislocation is a numerical technique where the plastic properties of a crystal are determined
using the elastic theory of dislocations. Physically, plastic deformation in crystalline materials results
from the collective interaction, motion, and reaction of a high density of dislocations. Since a disloca-
tion is typically represented by a line singularity in an elastic solid (Volterra, 1907; Burgers, 1939), the
evolution of the dislocation microstructure is governed by the elastic interactions between disloca-
tions (Hirth and Lothe, 1982; Devincre, 1995). To model such evolution, the formulation of the DD ap-
proach assumes that the resolved shear stress s* on slip planes consists of various components: the
Peach–Koehler force, sPK, the line tension, slt and the Peierls force, sp,
s�� ¼ spk þ slt

s� ¼ js��j � sp

(
ð4Þ
The stress due to the line tension corrects the energy due to the discrete nature of the framework, and
the Peach–Koehler force includes the applied loading and the interaction between dislocations.

Once the resolved shear stress is calculated, the dislocation velocity is computed according to the
mobility law, which, for a material with a low Peierls stress, can be written as (Nadgorny, 1998),
v ¼ 0; if s� 6 0
v ¼ signðs��Þ s�bB ; if s� 6 0

(
; ð5Þ
where B is the drag coefficient. Note that the linear dependence of the dislocation velocity on the re-
solved shear stress given by Eq. (5) represents the velocity of a single gliding dislocation and not the
average velocity calculated over all dislocation gliding on one slip system. Also, the above equation for
viscous glide applies to dislocation motion in pure fcc crystals when no interaction of the gliding dis-
location with localized obstacles, e.g. forest dislocations, is considered. Then, depending on the tem-
perature, the coefficient B accounts for electron and phonon drag. This is either the case of the free
flight dislocation mobility between the obstacles at ‘quasi-static’ strain rates or the case of dislocation
dynamics at high strain rates (Wang et al., 2007, 2009). Physically, as the dislocation velocity cannot
exceed the terminal velocity, i.e. the velocity of a transverse shear wave, a resolved shear stress cut-off
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value needs to be specified unless a complete dynamic analysis is used that includes an inertia term
and an effective mass (Hirth et al., 1998). When the resolved shear stress becomes larger than the cut-
off value, the dislocation velocity saturates at the terminal speed.

Once the velocity of the dislocation i is known, a search algorithm is applied to check if there are
any possible interactions with other dislocations within a virtual area of the gliding dislocation i. The
length of the dislocation segment and the free flight distance, vidt, define the virtual area gliding. The
relation between the Burgers vector and the slip systems of the two intersecting dislocation segments
define the type of interaction. When two dislocations intersect each other, one of the following inter-
actions occurs:

� Annihilation, if the two dislocations have opposite Burgers vectors and glide in the same slip plane.
� Collinear annihilation, if the two dislocations have collinear Burgers vectors and glide in intersect-

ing slip planes, each plane being the cross-slip plane of the other.
� Hirth lock, if the two dislocations have perpendicular Burgers vector and glide on different slip

planes.
� Glissile junction, if the resulting Burgers vector is glissile on either of the planes.
� Lomer Lock, if the resulting Burgers vector is sessible on either of the planes.
Finally, internal stresses can relax by cross slipping of screw dislocations. A Monte Carlo method is
used to check whether cross-slip is activated or not. The probability law of cross slip is given by
P ¼ b
L
L0

dt
dt0

exp �V
sIII � s

kT

h i
ð6Þ
where b is a coefficient that ensures that the probability does not exceed 1.0; sIII = 5 MPa is the
critical resolved shear stress at the onset of Stage III work hardening for Al; Va = 300b3 is the acti-
vation volume; T is set to room temperature; L0 = 1 lm and dt0 = 1s are reference values of length
and time, respectively; L is the length for cross slip of the screw dislocation segment; dt is the
simulation time step; and s is the resolved shear stress on the cross-slip plane (Kubin et al.,
1992).

On the other hand, the increment of plastic shear is a consequence of the gliding of dislocation i of
Burgers vector bi and it is given by Orowan’s law,
dcp
i ¼

bidAi

V
ð7Þ
where dAi is the area swept during gliding, and V is the volume of the sheared body. Knowing the
increment of plastic shear on slip system k, one can then compute the components of the plastic strain
rate tensor deij using
d _eij ¼
X12

k¼1

1
2

nðkÞi lðkÞj þ nðkÞj lðkÞi

� �
d _cðkÞ ð8Þ
where nðkÞi and lðkÞi are the components of the unit vectors parallel to the slip plane normal and parallel
to the Burgers vector, respectively. This framework associated with a set of periodic boundary condi-
tions to equilibrate the flux of dislocations (Bulatov et al., 2001; Madec et al., 2003a,b) can be used to
model the hardening response of a representative cell extracted from a single crystal. Note that some
authors (e.g., Bulatov et al., 2001) showed that even with heterogeneous dislocation motion, periodic
boundary conditions can appropriately represent the physical phenomena and as such they are used
in this study.

As shown by Eq. (5), the drag coefficient B is an additional parameter introduced by the DD frame-
work that needs to be computed by the multiscale approach. As expressed by this equation, this
parameter is used to estimate the velocity of the dislocations as a function of the resolved shear stress.
Such a law is usually given to describe the mobility of an infinite dislocation in a material with low
lattice friction. In this work, the value of this parameter is computed using MD simulations (Daw



Fig. 1. A schematic showing a multiscale methodology that was used to calculate the material parameters of the hardening law
needed at the crystal plasticity level to predict the mechanical response of a single crystal. The molecular dynamics, discrete
dislocations and crystal plasticity models were involved to predict the mechanical response.
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et al., 1993; Olmsted et al., 2005) for the motion of a single dislocation in a pure aluminum single crys-
tal. The computed valued is then validated with the experimental data of Parameswaran et al. (1972).

The proposed multiscale methodology is illustrated in Fig. 1 which presents the three different
length scales and corresponding simulation tools used to bridge the respective scales and predict
the mechanical response of a single crystal of macroscale dimensions. Five material parameters are
needed at the crystal plasticity level to numerically predict the strain-stress behavior. The two param-
eters of the flow rule can be estimated from published literature, while the three parameters in the
hardening rule, i.e. h0, js and j0, can be calculated directly using DD simulations and then transferred
hierarchically to the crystal plasticity level. At the DD level, the drag coefficient B needs to be quan-
tified as well, either from experimental data or a lower length scale MD analysis. In this work, this
coefficient is calculated numerically using MD and then transferred hierarchically to the DD level.
The details of the simulation models used at the three different length scales are presented in the next
section.

3. Simulation setup at the different length scales

This section summarizes the simulation models used at the different length scales in the multiscale
approach. The proposed methodology was validated by predicting the stress–strain response and de-
formed shape of an aluminum single crystal compressed along the [421] axis, a case that was exper-
imentally studied by Hughes et al. (2000). The X–Y–Z reference frame of the crystal was oriented along
the ½21 �1 �0�, ½�120� and [421] crystal directions. Such deformation mode and crystal orientation led to
dislocation glide on one primary slip system, altering during deformation the original shape of the
crystal sample (right circular cylinder) to that of a cylinder with oval cross section with principal
X–Y-axes. Microstructure studies of the experimentally deformed single crystals at large strains
(60% of strain) revealed three levels of grain subdivision, including (i) long macroscale bands in a ma-
trix structure, (ii) geometrically necessary boundary dislocations forming cellblocks, and (iii) disloca-
tion cells (Hughes et al., 2000). Due to the numerical limitations of the DD framework, these different
levels of subdivision were not investigated in this work. However, the formed dislocation microstruc-
tures generate backstresses, which give kinematic hardening at the macroscopic scale. Sauzay (2008)
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proposed a model based on the Eshelby inclusion and the Berveiller and Zaoui (1979) approach to
compute these intergranular backstresses.

3.1. Material parameter at the atomic scale

In metals characterized by a low Peierls stress such as Al phonon damping or drag is the main
mechanism controlling the motion of both screw and edge dislocations. Although some MD studies
(Olmsted et al., 2005) have shown that the drag coefficient of an edge dislocation was approximately
two times smaller than that of a screw dislocation, the MD analysis in this work was only performed
for the case of an edge dislocation. This should not affect the DD simulations as the velocity law given
by Eq. (5) is mainly used as a ‘‘predictor” for the displacements of dislocation segments during the DD
calculations.

As mentioned above, the drag coefficient (dislocation mobility) was quantified from MD simula-
tions using a MEAM potential (Baskes, 1992; Jelinek et al., 2007) and the MD package WARP (Gullett
et al., 2003). Compared to an EAM potential, the MEAM potential has the advantage of considering the
angular force dependency, adding then additional parameters to setup the MEAM potential for an MD
analysis. Using the MEAM potential, predictions of both the stacking fault energy and the elastic con-
stants are in better agreement with experimental data (Jelinek et al., 2007). These two physical quan-
tities typically control the dissociation of a full dislocation into two partials. Note that for high
symmetry crystal structures, such as Al, the angular force dependency may not be too critical for
the MD predictions, and hence, other atomistic potentials could have been used in this work without
quantitatively affecting the numerical results.

For the simulations, the axes of the atomic specimen are oriented along the ½�101�, ½�1 �1 �1�, and ½1 �21�
directions. The dimensions of the specimen are 17.86 nm by 11.22 nm by 1.73 nm. Dislocations are
introduced in the form of a dipole so that the Burgers vector vanished using the procedure described
in Chang et al. (1999). Periodic boundary conditions are applied along the line direction and the direc-
tion of dislocation motion. A shear stress is applied on the top and the bottom surfaces along the ½�101�
direction with a time step of 1 fs. The temperature was isothermally controlled using a Nose-Hoover
thermostat (Nose, 1984; Hoover, 1985). The dislocation core is located using the centrosymmetry va-
lue, and the dislocation velocity is then directly obtained as the dislocation glided on the slip plane.
The dislocation motion occurred in three distinct stages: an initial transient stage, acceleration, and
steady-state velocity (Mordehai et al., 2003). In this work, only the steady-state velocity is extracted
from the MD calculation for a time ranging between 50 ps and 200 ps.

3.2. Material parameters at the dislocation dynamics level

Discrete dislocation simulations using the existing DD code (mM)1 are performed to evaluate the
material properties from Eq. (3). The simulation model includes the following features. The model crystal
is a prismatic box (DD cell) with an initial microstructure consisting of a random distribution of Frank–
Read loops over the 12 slip systems. As the long-range stress field of a loop varies as r�3, no long-range
stresses are generated using such an initial microstructure. The initial dislocation density is 1012 m�2, to
which a relaxation is applied to simulate annealed microstructures. Periodic boundary conditions are im-
posed in order to mimic a single crystal of infinite dimensions as the density of dislocations leaving and
entering the unit cell is equilibrated. As the use of periodic boundary conditions in DD calculations can
lead to self-annihilation of dislocation lines, a numerical artifact, the cell size must be such that the self-
annihilation distance is larger than the dislocation mean free path. To satisfy this condition, the cell
dimensions are calculated according to the method proposed by Madec et al. (2003a,b), resulting in a
box with dimensions: 4.51 lm by 4.99 lm by 5.97 lm. With this cell size, no artificial length scale is
introduced in the calculation, and hence, the dislocation mean-free path controls the dislocation
microstructure development.
1 ‘‘mM” is an open source code for DD simulations originaly developed at the Laboratoire d’Etude des Microstructures (CNRS-
ONERA) and now available under the terms of the GNU GPL.
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This dislocation box is deformed with a constant plastic strain rate of 20 s�1 applied along the
[421] axis with a time step of 10�9 s. Reference mean lengths of 0.7 lm and 0.4 lm are used to force
segment discretization on the active and inactive slip systems, respectively. Additional simulation
conditions include the temperature at 300 K, the magnitude of the Burgers vector at 0.238 nm, and
the elastic constants (Young modulus and Poisson’s ratio) for Al. Note that, during the DD simulations,
the number of dislocation segments increases drastically with deformation, and hence, to limit the
CPU time, the DD analysis is limited to small deformations (less that 1%). Hence, the simulations do
not account for the kinematics of large deformations.

3.3. Simulations at the crystal plasticity level

The numerical simulations at the meso-scale use a crystal plasticity model (Marin and Dawson,
1998; Marin, 2006) where the kinetics of plastic flow and dislocation hardening are mathematically
represented by Eqs. (1) and (3), respectively. The particular application solved with this framework
is the deformation analysis of an aluminum single crystal compressed along the [421] crystallo-
graphic direction. Experimental results are available to validate the predictions (Hughes et al.,
2000). The material parameters used for the flow rule ðm; _c0Þ are estimated from the literature, while
the hardening constants (h0,js,j0) are computed numerically using DD. The anisotropic elastic con-
stants (C11, C12, C44) are those of Al.

Following the experimental work of Hughes et al. (2000), the single crystal is modeled as a right
circular cylinder with dimensions 7.3 mm by 11 mm (diameter and height). The x-, y- and z-axes of
the reference frame for the analysis are oriented along the crystal directions ½2110�, ½�120� and
[421], respectively. The cylinder is meshed with 14,976 brick finite elements, type ABAQUS-C3D8R
(one integration point). The crystal is then deformed at room temperature under uniaxial compression
along the z-axis ([421] crystal direction) by applying a variable negative displacement at the top of the
cylinder such that a constant applied strain rate of 10�3 s�1 was obtained. The bottom of the cylinder
has a zero z-displacement, with two points on this surface completely fixed to avoid rigid body mo-
tions. The lateral surface of the cylinder is stress free. The prescribed time interval and initial time step
are t = 600 s and Dt = 0.04 s, respectively. During the solution, ABAQUS adjusts this time step in the
range Dt = 0.04–4.0 s. The solution is obtained in 294 increments, with an average number of equilib-
rium iterations per increment of 3.

3.4. Bridging between the scales

In this work, both the time step and the boundary conditions are different at each length
scales. For instance, the CP time step is approximately 1013 and 107 times larger than the MD
and DD time steps, respectively. Periodic boundary conditions are used for the MD and DD
simulations, and uniaxial compression with the presence of free surfaces is considered for the
CP calculations.

Scale bridging from MD to DD: The functional form between the dislocation velocity and the re-
solved shear stress is an input for the DD framework. Such a relationship depends on the material
crystal structure. Therefore, for a FCC material, as the Peierls stress is low, a linear relationship be-
tween the dislocation velocity and the resolved shear stress is commonly assumed. The drag coeffi-
cient is an intrinsic material property, and it is independent of the boundary conditions including
the strain rate. At the MD level, only the velocity of a pre-existing infinite dislocation was investigated,
while the DD simulations were used to predict the behavior resulting for the collective motions and
interactions of a large population of dislocations. For that reason, a time bridging between the MD
and DD length scales is not warranted in this approach.

Scale bridging from DD to CP: The multiscale methodology presented in this work is developed to
predict the stress–strain behavior of a pure Al single crystal of macroscale dimensions with the hard-
ening predicted by DD as representative of the hardening of the single crystal. However, if the dimen-
sion of the specimen is drastically decreased, or if heterogeneities such as subgrain formation,
inclusions, or cracks are taken into account, the presented methodology would require further mod-
ifications. Alternatively, concurrent multiscale methods (Van der Giessen and Needleman, 1995; Zbib
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and Diaz de la Rubia, 2002; Weygand et al., 2002; Tang et al., 2006; El-Awady et al., 2008) could be
used to address such issues.

4. Numerical results

4.1. Bridging the drag coefficient, B, from MD to DD

In FCC Al, the full 1=2½�101�a0 edge dislocation splits into two Shockley partials with a stacking fault
region between them. According to elasticity theory, the dissociation length dsf of an edge dislocation
is obtained using the equation (Hirth and Lothe, 1982)
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dsf ¼
lb2

24pcI

2þ m
1� m

ð9Þ
where cI is the stacking fault energy reported by Jelinek et al. (2007), b is Burgers vector length of the
full dislocation, and m is Poisson’s ratio. In agreement with the elastic theory, which gives a separation
length in the order of 1.66 nm, the MD calculations have shown a dissociation of the full edge dislo-
cation into two partials separated by a distance of 1.43 nm.

Fig. 2a shows the evolution of the dislocation velocity for an edge dislocation of Burgers vector
½�101� as a function of the applied shear stress at a temperature of 300 K. The velocity is nearly linear
in the resolved shear stress up to 100 MPa. Above 100 MPa, a transient regime is observed and the dis-
location velocity smoothly converged to a saturation value, which is below the shear wave speed
(3.32 nm/ps). This result agrees with the scaling predicted by phonon damping theory. As the Peierls
stress can be neglected (Guyot and Dorn, 1967), in restricting the range of stresses from 0 to 100 MPa,
one can correlate Eq. (5) to the dislocation velocity calculated by MD in order to quantify the drag
coefficient. In varying the temperature between 100 and 500 K, the evolution of the drag coefficient
as a function of the temperature can be predicted as displayed in Fig. 2b. This plot shows that the drag
coefficient varies from 2.8 � 10�5 to 5.1 � 10�5 Pa s when the temperature increases from 100 to
500 K. Two lines with different slopes can be used to approximate the evolution of the drag coefficient
as a function of the temperature. These two lines intersect each other at a temperature around 300 K
(Nadgorny,1998); however, this temperature is lower than the one expected (the Debye temperature
is close to 400 K in Al). Such a difference can be attributed to the underestimated value of the melting
temperature calculated with the MEAM potential (Jelinek et al., 2007). Even with this Debye temper-
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ature difference, the obtained value of the drag coefficient agrees with the experimental values of
Parameswaran et al. (1972) and close to the simulated damping constant of Olmsted et al. (2005)
using an EAM potential.

Once the damping coefficient is calculated from MD simulations, its value is employed in Eq. (5) to
model the time evolution of hardening using DD calculations in order to characterize the material
parameters of the hardening law defined by Eq. (3).

4.2. Bridging the hardening parameters, h0, js and j0, from DD to crystal plasticity

Fig. 3 shows the evolution of the total plastic shear strain over the 12 slip systems as a function of
time. The initial stage, up to t = tr (tr = 1.6 � 10�5 s), corresponds to a relaxation of the initial configura-
tion. For longer times, a linear regression can be used to determine the slope of the line defining the plas-
tic shear strain rate. As the plastic deformation produced by the dislocation gliding must equilibrate the
applied deformation, the plastic shear strain rate should be constant during the deformation test. The
resolved plastic strain rate, which controls the load, is linked to the plastic shear strain rate according to
Fig. 3.
shear s
_ep ¼
X12

k¼1

SðkÞ _cðkÞ ð10Þ
with S(k) being the Schmid factor of the slip plane (k). Therefore, the plastic shear strain rate of 41 s�1

obtained in Fig. 3 is in good agreement with the applied strain rate of 20 s�1.
As the total plastic shear strain rates over the 12 slip systems is constant (Mecking and Kocks,

1981), Eq. (3) can be rewritten in the following form:
_j ¼ h0
js � j
js � j0

� �
C ð11Þ
where C ¼
P

_ca is the constant plastic shear strain rate calculated by DD, i.e. C = 41 s�1. A closed form
solution for the hardening as a function of the time was obtained by integrating Eq. (11) with respect
to time between the limits t = 0 and t, which corresponded to the strength values of j0 and j, respec-
tively. The Palm–Voce equation (Palm, 1948; Voce, 1948) is then recovered,
j ¼ js � ðjs � j0Þ exp � h0

js � j0
Ct

� �
ð12Þ
Evolution of the plastic shear strain as a function of the time. tr is the relaxation time. By linear regression, the plastic
train rate is 41 s�1.
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This equation, originally derived in a phenomenological manner, represents well the strain hardening
behavior for a range of metallic materials. The material parameters in Eq. (12), js, h0, and j0, are ob-
tained by correlating the predicted value with the hardening evolution determined by DD. As DD cal-
culations start initially using a random distribution of Frank–Read loops, the beginning of the plastic
deformation is not controlled by dislocation interactions. For this reason, the time range for the cor-
relation procedure needs to be limited to the forest-hardening regime. In general, the dislocation hard-
ening can be written using the classical Taylor relation
Fig. 4.
control
j ¼ alb
ffiffiffiffiffi
qf

p ð13Þ
where qf is the forest dislocation density, and a is a constant representing an average of the junction
strength over all existing dislocation configurations. Typically, in the forest-hardening regime, a is in
the range 0.35 ± 0.1 for a dislocation density close to 1012 m�2 (Saada, 1960; Madec, 2001).

The evolution of the a coefficient with time is plotted in Fig. 4. As noted from this figure, the time
evolution of a can be decomposed into two distinct regions. The first region is for the time between 0
and t0, where a increases from 0 to 0.7 and then decreases to the saturation value of 0.34. During this
transient region, the initial microstructure of dislocations is reorganized, and the first Frank–Read
loops activate. As such, in this region the hardening is not controlled by the interaction between dis-
locations. On the other hand, the second region corresponds to t > t0 where a oscillated around an
averaged value of 0.34. This value then indicates that, in this region, the interactions between dislo-
cations control the hardening strength. Note that the observed oscillations of a can be attributed to
the different time evolution of dislocation density on each slip system and, hence, the listed value
of a is only an average value. Of course, taking the average value of a implies that the different types
of interactions between dislocations are smeared out.

Because Eq. (12) models the hardening due to the storage/annihilation of dislocations, its correla-
tion to the computed hardening from DD is then restricted to the region where the hardening is
mainly controlled by dislocations interacting, i.e. the time interval [t0,1). Also, to study the effect
of the initial time t0 on the values of the hardening parameters, a shift dt0 ranging from dt0,1 to dt0,2

is applied to t0, meaning that the numerical correlation is performed for the time interval
[t0 + dt0,1). The results of this correlation are illustrated in Fig. 5, which presents both the time evo-
lution of dislocation hardening predicted by DD, and the correlation of Eq. (12) for four different values
Average value of the junction strength, a, as a function of the time. Below t0, the interactions between dislocations do not
the hardening whereas above t0, the interactions between dislocations control the hardening.



Fig. 5. Evolution of the hardening as a function of time modeled by dislocation dynamics. The dashed, dotted, long-dashed and
dash-dot lines are plots of Eq. (8) with the materials parameters summarized in Table 1.
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of dt0: �2 � 10�5 s, 0 s, 2 � 10�5 s and 4 � 10�5 s. For each value of dt0, the computed values of the sat-
uration strength, js, the initial strength, j0, and the initial hardening rate, h0, are reported in Table 1.

As can be deduced from Table 1, the initial strength and the saturation strength are not very sen-
sitive to the change in the value of t0, as j0 changed from 3.29 to 3.36 MPa (2% increased), while js

varied from 46.75 MPa to 49.10 MPa (5% change). On the other hand, the initial hardening rate
changes between 25.83 and 34.98 MPa (35% change) as t0 is varied, showing then the highest sensi-
tivity to variations in t0. As these variations in the hardening parameters will affect the predicted hard-
ening response, and hence, the computed stress–strain behavior in a crystal plasticity analysis, it is
important to determine accurately the value of the time interval [t0,1). It is important to mention that
there is some uncertainty in the computed value of js, as the predicted hardening from DD is only re-
stricted to short times (small deformation), and no numerical data at longer times is available. To ac-
count in part for this uncertainty, the fitting procedure was conducted for several initial guesses, and
the values of js reported in Table 1 are the ones leading to the minimum ‘‘chisquare” (the sum of
squares of the residual). However, only numerical predictions of the hardening over a longer time
using DD will help decrease the uncertainty on the value of js.

4.3. Crystal plasticity simulations

Crystal plasticity calculations were carried out to predict the stress–strain response of an Al single
crystal using the hardening parameters reported in Table 1. As mentioned before, the reference plastic
shear strain rate and the strain rate sensitivity coefficient were set to the values of 10�3 s�1 and 0.05,
Table 1
Set of crystal plasticity material hardening parameters correlated from dislocation dynamics results.

DD set number Time range (s) � 10�5 h0 (MPa) j0 (MPa) js (MPa)

1 0.08–0.4 29.6 3.4 47.7
2 0.10–0.4 25.8 3.4 49.1
3 0.12–0.4 27.1 3.4 48.8
4 0.14–0.4 35.0 3.3 46.7



Fig. 6. Stress–strain response of single crystal under uniaxial compression along the [421] axis with a strain rate of 10�3s�1. DD
set #1–4 are obtained for the four different value of dt0 �2 � 10�5 s, 0 s, 2 � 10�5 s and 4 � 10�5 s, respectively, and the
corresponding value of h0, j0 and js are given in Table 1.
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respectively. The effect of those two parameters on the mechanical behavior of Al single crystal is fur-
ther elaborated in the next section.

The predicted stress–strain responses from the crystal plasticity model are plotted in Fig. 6 where,
for comparison purposes, the experimental stress–strain curve taken from Hughes et al. (2000) is also
presented. The stress tensor used to compute the effective stress was determined as the volume aver-
age of the stresses in all the elements. As shown by this figure, the predicted and the experimental
mechanical responses were in good agreement, even though the hardening rate was higher with
the Parameter Set #4 (time interval used for fitting the DD results: 0.14–0.4 ms, see Table 1). Also,
the stress level after 60% of deformation for parameter sets #1 (58 MPa) and #2 (66 MPa) compared
well with the experimentally determined value (58.5 MPa). Note that the elastic portion of the curve
was not well captured, which may mean that the crystal elastic response determined from experi-
ments was more compliant than the one predicted with the published values of the elasticity
parameters.

The deformed mesh from the crystal plasticity simulation is illustrated in Fig. 7. Note that the crys-
tal cross-section ovals during deformation. This geometric trend was also shown by the experimental
results of Hughes et al. (2000) (see top of Fig. 7). In addition, the predicted lateral profile of the de-
formed mesh (along the oval major axis) reproduced the experimental shape (bottom of Fig. 7). How-
ever, this lateral profile was strongly affected by the strain rate sensitivity coefficient as presented in
the next section.

5. Sensitivity of the simulated behavior to the parameters m and _c0

A simple sensitivity study was performed to determine the effect of the material parameters of the
flow rule on both the stress–strain behavior and deformed shape of the Al single crystal. As the values
of these parameters were assumed/determined from the open literature and, in general, they are not
unique for a specific material, this sensitivity study will provide some insights of their effect on the
deformation behavior of the Al single crystal selected in this work.

Fig. 8 presents the effect of the strain rate sensitivity exponent m on both the stress–strain re-
sponse and the deformed shape at a strain of 60%. In these simulations, a reference strain rate of



Fig. 7. Shape of the cylinder after 60% of deformation. Left: experimental data from Hughes et al. (2000). Right: simulated mesh
using the set of parameters #2.
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10�3 s�1 with the hardening parameters corresponding to set #2, Table 1. This figure shows that, for a
strain lower than 20%, the stress–strain behavior was not affected by the value of m. However, as the
deformation increased, the effect of m was noticeable. In particular, for the value of m = 0.5, the pre-
dicted curve deviated from the experimental one, having a decrease of 22 MPa at 60% strain.

In addition, Fig. 8 also shows that the shape of the deformed mesh was affected by the value of m.
For the range between 0.05 and 0.25, the predicted deformed shape after 60% strain was in good
agreement with the experimental one, whereas for low values of m, i.e. m = 0.01, the computed shape
diverges from the experimental shape. In this case, a refined mesh did not improve the predictions.
Fig. 8. Stress–strain response and corresponding deformed shape as a function of the strain rate sensitivity coefficient. The
reference strain rate was setup to 10�3 s�1.
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Fig. 9a and b displays the evolution of the stress–strain response for the values of m of 0.05 and
0.25, respectively, each figure showing the curves computed with different values of the strain rate
reference, ranging from 10�4 to 10�2 s�1. Note that for m = 0.05, the stress level increased from 66
to 70 MPa when the strain rate reference was decreased from 10�2 to 10�4 s�1, while, for m = 0.25,
the stress level increased from 30 to 95 MPa as the reference strain rate decreased from 10�2 to
10�4 s�1. On the other hand, the deformed shape was not affected when the strain rate reference
was varied.

As a summary, Fig. 8 indicates that for a good prediction of the deformation behavior of the Al sin-
gle crystal, the strain rate sensitivity exponent should be in the range between 0.05 and 0.25, and the
strain rate reference should be set to 10�3 s�1. Should the value referred by Alder and Phillips (1954)
be used, then the upper bound used for the strain rate sensitivity coefficient needs to be decreased.
Fig. 9. Stress–strain response as a function of the reference strain rate. (a) m = 0.05 and (b) m = 0.25.
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6. Concluding remarks

A multiscale materials modeling approach bridging the information passing between three dis-
tinct length scales was presented. Two bridging transitions were involved in this methodology:
from molecular dynamics to discrete dislocations and then from discrete dislocations to crystal
plasticity. The approach was used to determine the material parameters of a hardening law gen-
erally used in dislocation-based crystal plasticity models, and was applied to predict the deforma-
tion response of an aluminum single crystal under compression along the [421] crystallographic
direction.

The approach computed the value of the drag coefficient at the MD level. Then, this coefficient was
transferred to the DD level to simulate dislocation hardening. From the predicted hardening behavior,
material parameters of the dislocation-based hardening law (initial strength, saturation strength, and
initial hardening rate) were computed and transferred to the CP level. Due to the noisy evolution of
hardening in the DD simulations, different starting points for the correlation of the material parame-
ters were tested. Once the plastic deformation was controlled by the interaction between dislocations,
the material parameters did not strongly depend of the lower bound defining the time range used for
the correlation procedure.

The computed hardening parameters were then used in the CP framework to predict the mechan-
ical response of an Al single crystal under compression. The simulated stress–strain behavior was in
excellent agreement with the experimental data illustrating that this multiscale methodology is a
good working theory to provide stress–strain behavior for metals upon further validation with other
materials. An uncertainty of less than 10% from the experimentally determined stress was obtained
after 60% of deformation. Note that hardening laws usually employ experiments to determine/cali-
brate the material constants. In this work, however, we used experiments to validate the parameters
in the hardening law that were already determined from the multiscale methodology.
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