Fatigue Modeling of a Powder Metallurgy Main Bearing Cap

Youssef Hammi, Tonya W. Stone, Paul G. Allison, and Mark F. Horstemeyer
Center for Advanced Vehicular Systems (CAVS)
Mississippi State University

SIMULIA Customer Conference 2010
Providence, RI
May 25-27 2010
Powder Metallurgy Process – Press & Sinter

Closed-Die Compaction

Final Shape and Mechanical properties are determined.

Three main steps:
1. Die Filling
2. Compaction
3. Ejection

- Load the mixture into a die or mould and apply pressure.
- This gives what is called a compact which requires only to have sufficient cohesion to enable it to be handled safely and transferred to the next stage.
- Such compacts are referred to as green, meaning unsintered: hence the terms green density and green strength.

Sintering

The thermal treatment of a powder or compact at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by bonding together the particles.
Powder Metallurgy Process – Press & Sinter

- A cost-effective and superior method of forming precision net-shape metal components
- Saves valuable raw materials through recycling and elimination of costly secondary machining through net and near-net shape design.

Scientific Approaches

Powder
- (purity, size, shape, density)

Mixing
- (conditions, homogeneity, segregation, packing, flow)

Compaction
- (discrete flow, friction, compaction, lubrication)

Sintering
- (temperature, time, heat rate, atmosphere, mass loss, densification, warpage)

Heat Treatment
- (homogeneity, heat, size change)

- Variations in input size powders
- Discrete element analysis
- Constitutive equations, tooling, lubrication, friction, work hardening
- Heat transfer, densification, mass change, phases
- Phase changes, diffusion, heat transfer

Y. Hammi et al. – Center for Advanced Vehicular Systems (CAVS) – Fatigue Modeling of a Powder Metallurgy Main Bearing Cap – Slide 3 of 24
Current PM Parts in Automotive Industry

- **Gears**
 - Phased teeth sprocket for General Motors 4T40/45 transmission.

- Main-bearing powder metal caps for 3.8 and 3.1 liter General Motors automotive engines.

Courtesy of Cincinnati, Inc. (1995)
Objective and Benefit of PM Modeling

Objective

- Shorten the lead-time needed from concept to implementation for new components
- Optimize current component for increasing performance and reduced weight
- Use modeling tool to evaluate (lightweight) material substitution in components
- Cost reductions
 - eliminating tooling iterations
 - eliminating prototype components (right-the-first-time)
 - improve material efficiency
 - significantly reducing warranty cost
- Improve our scientific understanding of powder metallurgy

Performance & Design Optimization

- Eliminating prototype components (right-the-first-time)
- Improving material efficiency
- Significantly reducing warranty cost
- Improving our scientific understanding of powder metallurgy
Outline

I – Compaction
- Material Modeling
- Material Characterization
- Closed-die Compaction of a Multi-Column part
- Closed-die Compaction of a Main Bearing Cap (MBC)

II – Sintering
- Material Modeling
- Material Characterization – Dilatometer Tests/Dimensional Changes
- Sintering of a Main Bearing Cap
- Density Comparison FEA & Experiments

III – Fatigue Analysis of Main Bearing Cap (MBC)
- MBC Supplier Fatigue Fixture
- Multi-Stage Fatigue Model (MSF)
- Fatigue Curve and Initial Conditions
- FEA results
- Comparison Fatigue Tests Results and FEA Predictions

IV – Summary
The yield surface is composed of:
- a failure envelope
- a movable cap surface

Three different types of behavior are possible:
Elastic, Failure and Compaction (cap).

The **Failure** mode of behavior:
- Limit the level of shear stress that the material can support without failure.
- Non-associated flow rule.
- The plastic strain is composed of an irreversible deviatoric (shear) component.

The **Cap** mode of behavior:
- The motion of the cap is related to the plastic volumetric strain through the use of a hardening rule (cap hardening).
- Associated flow rule.
- The plastic strain is composed of a shear component together with a negative volumetric component, which represents permanent compaction of the material.
- The Cap surface does not move during purely elastic deformation or when the stress point lies on the failure envelope alone.
I – Compaction
Material Modeling – Drucker/Prager Cap Model (VUMAT User Material subroutine in Abaqus/Explicit)

\[F^*(p_s) = d + \frac{p_s - p_d}{2} \tan \beta \]

\[q = s - \alpha \]

Shear Failure Surface \(F_s \)

Cap Surface \(F_c \)

\[F^*(p_s) = d + \kappa + \frac{p_s - p_d}{2} \tan \beta \]

Mises Surface \(F_p \)

\[\sigma_1, \sigma_2, \sigma_3 \]

\[p \]
I – Compaction
Material Characterization – FC-0205 Steel Powder with 0.6% and 1.0% Acrawax

– All compaction tests are performed on cylindrical compacts
– Young’s Modulus measured from green compacts at different densities

Compressibility – Cap Hardening

Young’s Modulus E

Material Cohesion d

Cap Eccentricity R

Interparticle Friction β

F_t Brazilian
$\sigma_t = \frac{2F_t}{\pi DT}$
$p_t = \frac{2\sigma_t}{3}$
$q_t = \sqrt{13}\sigma_t$

F_C Compression
$\sigma_c = \frac{F_C}{A}$
$p_c = \frac{\sigma_c}{3}$
$q_c = \sigma_c$

Strain gages to measure hoop strains

Y. Hammi et al. – Center for Advanced Vehicular Systems (CAVS) – Fatigue Modeling of a Powder Metallurgy Main Bearing Cap – Slide 9 of 24
I – Compaction
Material Characterization – PQ-Plots: Iso-Densities Lines in PQ Stress Space

Evolution of Yield Surfaces during densification

Theoretical Density
FC-0205 0.6% & FC-0208: 7.44 g/cc
FC-0205 1.0%: 7.25 g/cc

Tap Density: 3.29 g/cc
Apparent Density: 3.02 g/cc
I – Compaction
Closed-Die Compaction of a Multi-Column part (Abaqus/Explicit)

- Abaqus/Explicit with CAX4R elements
- Axisymmetric model with swept display

Experiment
characterized by X-ray and Archimedes’ density measurements

Density values from Archimedes’ Method

<table>
<thead>
<tr>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immersion Density (g/cc)</td>
<td>6.07</td>
<td>6.41</td>
<td>6.50</td>
<td>6.56</td>
<td>5.50</td>
<td>6.60</td>
<td>6.36</td>
<td>6.36</td>
<td>6.53</td>
<td>6.41</td>
<td>6.50</td>
<td>6.53</td>
</tr>
<tr>
<td>FEA (g/cc)</td>
<td>5.99</td>
<td>6.49</td>
<td>6.46</td>
<td>6.45</td>
<td>5.51</td>
<td>6.48</td>
<td>6.65</td>
<td>6.35</td>
<td>6.20</td>
<td>6.11</td>
<td>6.10</td>
<td>6.04</td>
</tr>
<tr>
<td>Difference (g/cc)</td>
<td>-0.08</td>
<td>0.08</td>
<td>-0.04</td>
<td>-0.11</td>
<td>0.01</td>
<td>-0.05</td>
<td>0.05</td>
<td>-0.01</td>
<td>-0.16</td>
<td>-0.32</td>
<td>-0.20</td>
<td>-0.31</td>
</tr>
<tr>
<td>Percent Error</td>
<td>-1.36</td>
<td>1.20</td>
<td>-0.61</td>
<td>-1.64</td>
<td>0.16</td>
<td>-0.77</td>
<td>0.69</td>
<td>-0.15</td>
<td>-2.59</td>
<td>-4.93</td>
<td>-3.20</td>
<td>-4.84</td>
</tr>
</tbody>
</table>

2D X-Ray CT attenuation distribution
(sample thickness: 0.25 inch)

Finite Element Analysis
Immersion Density

Average Densities (g/cc)

Y. Hammi et al. – Center for Advanced Vehicular Systems (CAVS) – Fatigue Modeling of a Powder Metallurgy Main Bearing Cap – Slide 11 of 24
I – Compaction
Closed-Die Compaction of Main Bearing Cap (Abaqus/Explicit)

C3D8R Elements in Abaqus/Explicit
No Separation Relationship
Non Uniform Apparent density
I – Compaction
Closed-Die Compaction of a Main Bearing Cap – Springback (Abaqus/Standard)

Geometry and Material Solution imported from Abaqus/Explicit to Abaqus/Standard for Elastic Springback Analysis

Boundary Conditions

- Point with x = 0
- Points with y = 0
- Points with z = 0

Volume grows 0.6% after springback

Geometry of MBC before (with mesh) and after (without mesh) springback. (Deformation Scale Factor = 100)
To study the creep of powder due to diffusional mass transport on the interparticle contacts, McMeeking and Kuhn [1992] proposed a macroscopic diffusional creep law.

To obtain the diffusional deformation rate as defined by McMeeking and Kuhn [1992], we introduce the following sintering dissipation potential [Kwon et al., 2004]:

$$ F_{di} = -\frac{1}{2K_d} (p + \sigma_s)^2 + \frac{q^2}{6\mu_d} $$

$K_d(p, p_0, T, G, Q_b, R)$ is the bulk viscosity

$\mu_d(p, p_0, T, G, Q_b, R)$ is the shear viscosity

$\sigma_s(p, p_0, G, \gamma)$ is the macroscopic manifestation of the driving forces for the processes of sintering.

(also called the sintering potential)

The grain growth evolution under pressureless sintering can be written as [Kwon et al., 2004]:

$$ \dot{G} = k' \frac{G}{G^2} $$

$k'(T, Q_G, R)$ is a material constant

The deformation rate is given by:

$$ D_{di} = \frac{1}{3} \frac{\partial F_{di}}{\partial p} I + \frac{\partial F_{di}}{\partial q} n = -\frac{1}{3} \frac{p + \sigma_s}{K_d} I + \frac{q}{3\mu_d} n $$
Dimensional Changes for FC-0205 0.6% Acrawax
Heating Rate: 10°C/min – Green density: 0.61%
II – Sintering

Sintering Analysis of a Main Bearing Cap – Dimensional changes (Abaqus/Standard)

- C3D8R Elements in Abaqus/Standard
- Density mapping from Springback solution
- MBC supplier temperature profile applied to every node

Density distribution and shrinkage of the MBC after sintering with a deformation scale factor of 100 (mesh of green part is shown as transparent).
II – Sintering
Density Comparison FEA & Measurements

- Highest percent error in zones 6, 7, 8 and 9 where the particle flow is the most important during compaction.
III – Fatigue Analysis of Main Bearing Cap

MBC Fatigue Fixture

Fixture description:

The load is applied at an angle of 10° vertical axis of the bearing cap and it is distributed at an arc length relative a 52.5° angle. A preloading torque of 60 ft-lbs was applied to each of vertical bolts.
– The microstructure-based multi-stage fatigue (MSF) model incorporates different microstructural discontinuities (pores, inclusions, etc.) on physical damage progression.
– The fatigue life is partitioned into three stages based on the fatigue damage formation and propagation mechanisms:

\[N_{Total} = N_{Inc} + N_{MSC} + N_{PSC} + N_{LC} = N_{Inc} + N_{MSC/PSC} + N_{LC} \]

• Crack incubation (INC) as a function of local plastic deformation (modified Coffin–Manson law),

\[C_{inc} N_{inc}^\alpha = \beta = \frac{\Delta \gamma_{max}^p}{2} \]

• Microstructurally small crack (MSC) and physically small crack (PSC) growth [Gall et al., 2000]:

\[
\left(\frac{da}{dN} \right)_{MSC} = \chi (\Delta CTD - \Delta CTD_{th}) \\
\Delta CTD = aC_1 \left(\frac{GS}{GS_0} \right)^{\sigma_0} \left(\frac{GO}{GO_0} \right)^{\varepsilon} \left[\frac{U\Delta\sigma}{S_{ut}} \right]^{\xi} + C_1 \left(\frac{GS}{GS_0} \right)^{\sigma_0'} \left(\frac{GO}{GO_0} \right)^{\varepsilon'} \left[\frac{U\Delta\gamma_{max}^p}{2} \right]^{2}_{macro}
\]

• Long crack (LC) growth (Paris law):

\[
\log \left(\frac{da}{dN} \right) = \log \left(A(\Delta K)^m \right) \quad \Delta K = Y\Delta\sigma \sqrt{\pi a}
\]
III – Fatigue Analysis of Main Bearing Cap
Fatigue curve and Initial Conditions (Abaqus/Standard)

- Fatigue tests performed on samples of low and high densities
- Interpolation of fatigue life for other density values.

Density Distribution from Compaction/Sintering Analyses

Young’s Modulus distribution (MPa)

Shaft is represented by a rigid surface

Strain Amplitude vs. Cycle to failure curves for the lower and higher bounds.

- Low Porosity Fatigue Data
- High Porosity Fatigue Data
- MSF Low Porosity Fatigue Life
- MSF High Porosity Fatigue Life

Strain Amplitude

Cycles to Failure

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
0.0045

10^2 10^3 10^4 10^5 10^6 10^7

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
0.0045

10^2 10^3 10^4 10^5 10^6 10^7

Y. Hammi et al. – Center for Advanced Vehicular Systems (CAVS) – Fatigue Modeling of a Powder Metallurgy Main Bearing Cap – Slide 20 of 24
III – Fatigue Analysis of Main Bearing Cap
FEA Results – Mises Stress Distribution at Shaft Maximum Load (Abaqus/Standard)

– Three step analysis:
 • Bolt load of 60 ft-lbs
 • Minimum Shaft Load of 1,000 lbs
 • Maximum Shaft Load of 23,000 lbs

Mises stress distribution [MPa] at a shaft load of 23,000 lbs.

\[\Delta \sigma_{eq} = \sigma_{eq\text{Max Load}} - \sigma_{eq1,000 \text{ lbs}} \]

Mises stress amplitude distribution [MPa] at a shaft load of 23,000 lbs.

Deformation Scale Factor of 25
III – Fatigue Analysis of Main Bearing Cap
FEA Results – Fatigue Life for Incubation and Long Crack (Abaqus/Standard)

Number of Cycles N_{INC} for incubation at a shaft load of 23,000 lbs.

Number of Cycles N_{LC} for long crack at a shaft load of 23,000 lbs.

III – Fatigue Analysis of Main Bearing Cap
Comparison Fatigue Test Results and FEA Predictions

<table>
<thead>
<tr>
<th>Shaft Load (lbs)</th>
<th>Recent FC-0208 Test Results</th>
<th>Previous FC-0208 Test Result</th>
<th>MPP – Ilia et al., 2003</th>
<th>Fatigue FEA Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,000</td>
<td>N/A</td>
<td>N/A</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>19,000</td>
<td>Pass</td>
<td>N/A</td>
<td>Pass/Fail</td>
<td>Pass</td>
</tr>
<tr>
<td>20,000</td>
<td>Pass/Fail</td>
<td>Pass</td>
<td>Pass/Fail</td>
<td>Pass</td>
</tr>
<tr>
<td>21,000</td>
<td>Pass/Fail</td>
<td>Pass/Fail</td>
<td>Pass/Fail</td>
<td>Pass</td>
</tr>
<tr>
<td>22,000</td>
<td>Fail</td>
<td>Pass/Fail</td>
<td>Fail</td>
<td>Fail</td>
</tr>
<tr>
<td>23,000</td>
<td>N/A</td>
<td>Fail</td>
<td>N/A</td>
<td>Fail</td>
</tr>
</tbody>
</table>

The FEA Compaction and Sintering modeling is a good methodology to predict the density in Powder Metallurgy automotive components.

The Multi-Stage Fatigue Model provides a good life prediction of the Main Bearing Cap automotive component based on the density distribution.

Design Optimization for better performance and lower mass & cost.

Material substitution with Al-MMC (Metal Matrix Composites).

Initial density remains an uncertainty especially in large PM components.

Powder flow can be difficult to simulate especially in complex geometries and multi-level parts.

New numerical functionalities such as Coupling Eulerian-Lagrangian (CEL) or Discrete/Finite Elements may improve the prediction of powder flow.
I – Compaction
Material Characterization – Cap Hardening / Compressibility Curve

The $p_b-\varepsilon_{vp}$ curve describes how the cap section of the yield surface evolves while the volumetric strain ε_{vp} increases. The curve can be established using the data from:
- uniaxial die compaction, or
- isostatic compaction experiments.

From the sensitivity analysis, it is found that the $p_b-\varepsilon_{vp}$ curve has a great effect on the compaction pressure p_b.

$$\bar{\varepsilon}_{vol}^p = W \left(1 - \exp\left[-c_1(p_b - p_{b\|0})^{c_2}\right]\right)$$

$$\rho = \rho_0 \exp\left(\frac{\bar{\varepsilon}_{vol}^p}{\rho}\right)$$

(from Conservation of Mass)

ρ_0 initial density
ρ density
W, c_1, c_2 shape parameters

I – Compaction
Material Characterization – Failure Stress for Brazilian and Compression Tests

\(\sigma_t = \frac{2F_t}{\pi DT} \)
\(p_t = \frac{2\sigma_t}{3} \)
\(q_t = \sqrt{13}\sigma_t \)

\(\sigma_c = \frac{F_C}{A} \)
\(p_c = \frac{\sigma_c}{3} \)
\(q_c = \sigma_c \)

\((p_c, q_c) \) points
\((p_t, q_t) \) points

Drucker-Prager Failure line intersect iso-density points \((p_t, q_t) \) and \((p_c, q_c) \)

The material cohesion d measures the cohesive strength of the material. The increase in material cohesion d plays a dominant role in flow dynamics as it directly impacts the bulk flowability of solid material.

$$d = \begin{cases}
0 & \text{if } \rho \leq \rho_d \\
\rho \exp[\rho_d - \rho_d] - d_1 & \text{if } \rho > \rho_d
\end{cases}$$
The interparticle friction β defines the slope of the failure envelope. It is also called the internal friction angle.

The equation of the interparticle friction is given by:

$$\tan \beta = \begin{cases} b_1 - b_2 \rho_d & \text{if } \rho \leq \rho_d \\ b_1 - b_2 \rho & \text{if } \rho > \rho_d \end{cases}$$
The cap eccentricity R is a material parameter that controls the ellipsoidal shape of the cap surface [Coube and Riedel, 2000].

$$R = \frac{R_1 - R_2}{1 + (\rho / \rho_c)^k} + R_2$$

$$p = \frac{1}{3} (\Sigma_a + 2\Sigma_r)$$

$$q = \Sigma_a - \Sigma_r$$

The Young's Modulus E is a function of the relative density ρ.

$$E = (E_0 + E_1\rho) \exp\left(\frac{\rho}{\rho_E}\right)^\gamma$$