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In this research, a new zeroth-order (non-gradient based) topology optimization 

methodology for compliance minimization was developed. It is called the Element 

Exchange Method (EEM). The principal operation in this method is to convert the less 

effective solid elements into void elements and the more effective void elements into 

solid elements while maintaining the overall volume fraction constant. The methodology 

can be integrated with existing FEA codes to determine the stiffness or other structural 

characteristics of each candidate design during the optimization process. 

This thesis provides details of the EEM algorithm, the element exchange strategy, 

checkerboard control, and the convergence criteria. The results for several two- and 

three-dimensional benchmark problems are presented with comparisons to those found 

using other stochastic and gradient-based approaches.  Although EEM is not as efficient 

as some gradient-based methods, it is found to be significantly more efficient than many 

other non-gradient methods reported in the literature such as GA and PSO. 
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CHAPTER I 

INTRODUCTION 

 

Topology optimization description 

 Topology optimization is aimed at finding the optimum distribution of a specified 

volume fraction of material in a selected design domain. The optimum distribution is 

often measured in terms of the overall stiffness of the structure such that the higher the 

stiffness the more optimal the distribution of the allotted material in the domain.  It can 

also be interpreted as finding the optimum load path between the loading and support 

points for a fixed amount of mass or volume fraction. Topology optimization can be 

applied to both continuum and discrete (truss like) structures depending on the 

application. 

It should be noted that in topology optimization, both the shape of the exterior 

boundary and configuration of interior boundaries (i.e., holes, cutouts) can be optimized 

all at once. Figure 1.1 shows the difference between sizing, shape and topology 

optimization problems.1 The differences between these three structural optimization 

categories mainly consist of the definition of design variables. In the sizing optimization 

problem, the layout of the structure is prescribed, whereas in shape optimization problem, 

the exterior and interior boundaries can be treated as design variables.
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Figure 1.1   a) Sizing, b) shape and c) topology optimization1 (courtesy of Sigmund) 
  

Introduced by Bendsøe and Kikuchi2 and Rozvaney3 topology optimization has 

gained considerable attention in academia and industry, and is now being applied to the 

structural and material design4, mechanism5 and Micro-Electro-Mechanical Systems 

(MEMS) design.6,7 Bendsoe et. al8 also reviewed the recent developments of topology 

optimization  techniques for application in some new types of design problems such as 

design of laminated composite structures, heat transfer problems, design in fluids, 

acoustics, electromagnetism and photonics.  

In the so called “material distribution method” 2, which is the basis for the design 

parameterization in topology optimization, the goal is to create regions of uniform 

material distribution to minimize a specific structural property (e.g., compliance). In this 

method, a discretized (e.g., finite element) model of the structural domain (Figure 1.2) is 

used to perform the structural analysis and optimization. 
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Figure 1.2   Discretized model of the structural domain with specified loading and 

support conditions 
 

By treating the non-dimensional density of each element as an independent design 

variable and relating the other physical and engineering properties to element density, a 

parameterized model is developed that can be used to find such properties as stiffness, 

thermal conductivity, magnetic permeability, porosity, etc. Theoretically, the non-

dimensional density takes a value of one or zero for a solid or void element, respectively. 

Given an initial distribution of a specified amount of mass, a structural analysis (e.g., 

finite element analysis (FEA)) is performed to evaluate the response characteristics of the 

structure. Depending on the topology optimization methodology used, the distribution of 

solid and void elements is updated and another structural analysis is performed. The 

sequence of analysis and optimization is continued until the solution convergences with 

the emergence of the optimal topology.   

For a continuum structure represented by a domain of finite elements and 

associated boundary conditions, the topology optimization problem can be expressed 

mathematically as: Find the optimal distribution of solid and void elements that would 
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where f(ρ) represents the total strain energy, ρ the vector of non-dimensional element 

densities, which are treated as the design variables, u the vector of global generalized 

nodal displacements, K the global stiffness matrix, with uj and Kj  as the displacement 

vector and stiffness matrix of the jth element, respectively. With ρj and Vj representing 

the non-dimensional density and volume of the jth element, the constraint in equation 1.1 

imposes an upper bound on the acceptable volume fraction in the design domain. The 

stiffness matrix Kj depends on the density of the jth element in such a way that we may 

write  

  
j

p
j eK Kρ=         (1.2) 

where Ke is the stiffness matrix of the jth element if it is fully solid and p >1 is called the 

penalization power. To avoid having an ill-conditioned stiffness matrix, the void 

elements are assumed to have a lower bound density, ρmin > 0. Equation 1.2 is the 

constitutive relation between the density and stiffness in the so-called solid isotropic 

microstructure (material) with penalization (SIMP) method.3 In this way, the intermediate 

densities are penalized by power p; typically, using p ≥3 results in a black-and-white 

(solid-and-void) topology which is very desirable in structural topology optimization.9 

As seen in equation 1.1, the number of design variables in the optimization 

problem is the same as the number of finite elements (FE) in the model. So, one of the 

most important issues which need to be considered in the implementation of topology 
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optimization is the choice of optimization algorithm and the number of FEA calculations. 

This is especially true for topology optimization of three-dimensional structures 

involving complex boundary conditions. 

  

Overview of topology optimization methods 

Topology optimization methods can be divided into two main categories: gradient 

based and non-gradient based methods. In gradient-based optimization, the design 

variables (density ρ in topology optimization) are defined as continuous variables 

( min0 1.0ρ ρ< ≤ ≤ ) facilitating the evaluation of the first or possibly second-order 

derivatives of response functions with respect to design variables and the implementation 

of mathematical programming techniques for solution of the optimization problem. In 

non-gradient based approaches, the design variables take discrete values and the methods 

rely on repeated function evaluations using a stochastic or population-based algorithm. A 

desired solution for a topology optimization problem is a distribution of either solid (ρj = 

1) or void (ρj = 0) elements in the FE model of the structure. Mathematically, however, it 

is difficult to work with integer or discrete design variables. In order to make the 

functions in the mathematical sense continuous and differentiable, one may need to allow 

the densities to have intermediate values, which is called relaxation of the design 

variables.10 A concise overview of these two different approaches is presented next. 
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Gradient-based methods 

Major developments in topology optimization have, for the most part, been 

directed at the homogenization2,11 and the solid isotropic material with penalization 

(SIMP)3,9,12 methods.   

Homogenization based optimization (HBO) treats the geometric parameters of a 

microstructure as design variables and homogenizes the properties in that microstructure. 

The microstructure as shown in Figure 1.3 is called hole-in-cell or layered 

microstructure, which is anisotropic in general.13  

For the optimization problem, the geometric parameters of the microstructures 

and their orientation are treated as design variables. The stiffness matrix is numerically 

calculated based on the homogenization for different sets of the design variables. The 

structure is iteratively optimized by varying the design variables associated with these 

microstructures. Since all the design variables are continuous, a gradient-based approach 

may be utilized to update them in each iteration of the optimization loop. 
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Figure 1.3   Microstructures for two-dimensional continuum topology optimization 

problems: a) Perforated microstructure with rectangular holes in square unit 
cells, and b) Layered microstructure constructed from two different isotropic 
materials13 (courtesy of Eschenauer and Olhoff) 

 

Figure 1.4 shows the general scheme of topology optimization using SIMP 

method.14 At the first step of the process, the geometry, finite element mesh, and 

boundary conditions are set up followed by initialization of the density distribution ρ. 
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Figure 1.4   General scheme of topology optimization using SIMP14 (courtesy of Shun 

Wang) 
 

SIMP usually starts with a uniform distribution of density which is equal to the 

specified volume fraction. Then the optimization loop begins with assembling and 

solving the equilibrium equations (Ku = f ) using FEA. Next, in the sensitivity analysis, 

the derivatives of the objective function (strain energy) with respect to design variables 

(ρj’s) are computed. Thereafter, an optional filtering technique is applied to remedy the 

checkerboard problem (discussed in the next chapter). The design variables are then 

updated in the next step using either the optimality criteria (OC)4 or method of moving 

asymptotes (MMA).15 The updated design variables and the resulting topology will be 

analyzed again and the process of analysis and optimization is repeated until convergence 

is reached.   
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In general, the optimization process may take many iterations to converge. In 

terms of computational efficiency, the most expensive part of the optimization is the 

finite element analysis (FEA) of each candidate design. Depending on the complexity of 

the structure (i.e., degrees of freedom), the cost of FEA could change. In addition, many 

topology optimization algorithms have some additional procedures, including the 

calculation of search direction in the gradient based methods (sensitivity analysis) and/or 

to filter the undesirable features (e.g. checkerboard regions which will be discussed later) 

of the final topology. These additional procedures tend to further increase the 

computational cost of topology optimization. 

The SIMP method has become a very popular approach as it is simple to 

implement, computationally efficient, and easy to integrate with general-purpose FEA 

codes.16 However, it suffers from several drawbacks including mesh-dependency of the 

final topology, undesirable checkerboard patterns requiring the use of filtering 

techniques, and entrapment in local minima due to its reliance on gradient-based 

optimization techniques.  

Recent improvements to the SIMP method include the use of mesh-independency 

filtering4,17, higher-order finite elements18,19, perimeter constraint on the density 

function20, and alternative density-stiffness interpolation schemes.21 Commonly used 

filtering techniques adjust either the sensitivity derivatives of the objective function with 

respect to the design variables or adjust the design variables themselves in order to 

eliminate the checkerboard effect. Bruns22 introduced the SINH (pronounced “cinch”) 

method remedy the drawbacks of both of these filtering approaches while capitalizing on 

the advantages of each approach. Unlike SIMP, SINH is not an acronym; instead, it 
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merely references the use of the hyperbolic sine function. Using hyperbolic sine (sinh) 

functions, the intermediate density material is made less volumetrically effective than 

solid or void elements and consequently results in unambiguous and predominantly solid-

void designs. By adding a new constraint to the topology optimization problem, labeled 

the sum of the reciprocal variables (SRV), Fuchs et al.23 produced sharper 0-1 solutions 

than the SIMP with greater stiffness for the same amount of material. Efforts to produce 

better design topologies include relaxation or restriction of the design problem and 

discretization of the original topology optimization problem combined with heuristic 

rules to avoid unwanted effects such as checkerboards.10 

 

Non-gradient-based methods 

It has been suggested that the topology optimization problem in equation 1.1 lacks 

solution in its general continuum form.10 For a given design, the introduction of more 

holes without changing the overall material volume fraction will generally improve the 

objective function. This characteristic is one of the reasons for the solutions to become 

mesh-dependent. One way to find a solution to this problem is through discretization of 

the domain and relaxation10 of the design variables, which was briefly introduced in the 

previous section. Another way to limit the number of candidate designs (i.e., solutions) is 

to make design variables binary which means each finite element has either ρmin or 1 as 

the value of its density. 

The choice of binary design variables facilitates the formation of solid-and-void 

topologies without any need for a filtering technique. Since the design variables are 
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binary valued, the objective function—as a consequence—will not be differentiable. 

Therefore, the gradient methods are not applicable in these cases. 

Recent advances in the application of non-gradient approaches to topology 

optimization problems include the simulated biological growth (SBG)24, particle swarm 

optimization (PSO)25, evolutionary structural optimization (ESO)26, bidirectional ESO 

(BESO)27, and metamorphic development (MD)28. Some of these methods together with 

other algorithms mimicking natural phenomena such as genetic algorithms (GA)29 and 

cellular automata (CA)30 have been used in sizing and shape optimization problems as 

well. The use of binary design variables makes it possible for these methods to produce a 

black-white (solid-void) optimal topology that excludes any gray (i.e., fuzzy or 

intermediate density) regions without using any filtering technique. In his recent paper, 

Rozvany16 gives an in-depth overview of the SIMP method and elaborates on several 

shortcomings of ESO.26,27 

Although non-gradient based approaches are used in conjunction with binary or 

discrete design variables, there is no restriction to the use of continuous design variables 

in these methods.25  

When the optimum region is flat or contains multiple local (or global) optima, it is 

possible to find dissimilar optimum configurations.31 Werner32 used the full factorial 

design technique to obtain the global optimum solutions for some benchmark topology 

optimization problems with very limited number of elements because of large number of 

function calls (FEA) for full factorial design. Mei et al.33 developed a binary discrete 

method for topology optimization by introducing a new sensitivity analysis formula 

based on the perturbation analysis of the elastic equilibrium increment equation. They 
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found different optimal topologies for the same problem, demonstrating the non-

uniqueness of the binary solution for topology optimization problems.  

  

Overview of the proposed methodology 

In this thesis, a new non-gradient based approach called the Element Exchange 

Method (EEM) is presented. Named after the principal operation in the topology 

optimization strategy, EEM solution procedure can be integrated with any existing FEA 

code. 

  Generally, there are three numerical problems in topology optimization: 

Checkerboards, Mesh dependence, and Local optimum. Although a more detailed 

discussion of these problems and how they may be avoided is presented in the next 

chapter, a brief description of each is given below. 

Checkerboard regions are those with solid and void elements ordered in a 

checkerboard fashion. It is undesirable to have a checkerboard pattern in a topology 

solution because it has artificially high stiffness, and also such a configuration would be 

difficult to manufacture. 

Mesh dependence refers to the problem of not finding the same solution when the 

domain is discretized using different mesh densities. Although all finite-element based 

solutions have mesh dependency, in some gradient-based methods (i.e., SIMP4,17) the 

filtering scheme used to eliminate medium density (gray) elements is also mesh 

dependent. 

  Finally, entrapment into a local optimum is always a concern in design 

optimization when gradient-based techniques are used. This characteristic is less of a 
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concern in non-gradient based methods since their search algorithms do not rely on 

function gradients, and they tend to explore a much larger portion of the design space as 

opposed to that in the vicinity of the initial design point. 

There are different techniques to overcome the above mentioned problems which 

are described briefly in Ref. [10]. In the next chapter, specific details of the EEM 

algorithm are provided along with description of the strategies used in EEM to address 

the aforementioned problems. The results for several two- and three-dimensional 

benchmark problems of varying complexity are presented and comparisons are made 

with the solutions found using the SIMP and some other methods as reported in the 

literature. 

 

General principle of element exchange method 

A simple structural system idealized by a combination of four linearly elastic 

springs is shown in Figure 1.5. The discrete spring system is attached to a rigid wall on 

the left side and is pulled on the right side by the force F. The total strain energy, ET 

stored in the system is simply the sum of energy stored in individual springs and 

expressed as 

4 4
2

1 1

1
2T i i i

i i
K δ

= =

= =∑ ∑E E         (1.3) 

where Ei is the energy in the ith spring which can be defined in terms of the 

corresponding stiffness, Ki and elongation, δi.  
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Figure 1.5   Spring system a) before and b) after element exchange operation 

 
Assuming that only two springs can be used for minimizing the strain energy of 

the system, the problem becomes one of finding which two springs to keep and which 

ones to eliminate. The two retained springs also create the optimal load path between the 

loaded and supported points of the system. For simplicity, a stiff “solid” spring is 

assumed to have a stiffness of Ks while a flexible “void” spring has a stiffness of Kv = 

0.001 Ks. If the initial distribution is that shown in Figure 1.5(a), then the total strain 

energy can be shown to be 
2

6 3 0 3 2 21 11 10 1 10 1 10 1 10
2 2 2

s
T s

s

K FK
K

δ δ− − −⎡ ⎤= × + × + × + × ≈ =⎣ ⎦E .  

Since spring 1 is a solid spring with the lowest strain energy between the two solid 

springs, in the next iteration, it will be converted into a void spring while spring 4 

representing a void spring with the highest strain energy between the two void springs 

will be converted into a solid spring. Figure 1.5(b) shows the updated layout after the 

element exchange operation is performed. Now, the total strain energy stored in the 
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system can be shown to be
2

4 4 0 0 2 2 12.5 10 2.5 10 1 10 1 10
2 4

s
T s

s

K FK
K

δ δ− −⎡ ⎤= × + × + × + × ≈ =⎣ ⎦E .  

While the number of “solid” springs is kept constant, the total strain energy of the system 

is reduced by 50%, signifying greater stiffness and smaller compliance. Hence, by 

identifying and switching the less influential solid spring into a void spring and the more 

influential void spring into a solid spring, a better (more efficient) load path is created. 

The purpose of this simple example is to illustrate the general principle of element 

exchange. By extending the loading system to a continuum domain represented by a 

finite element mesh, it would be possible to use the element exchange as part of a 

solution procedure for finding the optimal topology. 
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CHAPTER II 

ELEMENT EXCHANGE METHOD 

 

The main algorithm 

As stated earlier in equation 1.1, to avoid having an ill-conditioned stiffness 

matrix, the void elements are assumed to have a lower bound density, ρmin > 0. As in the 

SIMP method, it is assumed that the stiffness-density relationship holds but with no 

penalization factor (i.e., Ej = ρj E, where E is the Young’s modulus of the solid material). 

In EEM, ρj is treated as a binary design variable with ρmin = 0.001. Moreover, the 

inequality constraint is replaced by an equality constraint (
1

eN

j j
j

V Vρ
=

=∑ ) so that in each 

iteration this equality constraint, which is the volume faction constraint, is not violated 

(In the case of non-uniform meshes, the violation will be allowed within a small tolerance 

by exchanging different number of void versus solid elements). The EEM algorithm for 

the solution of the topology optimization problem in equation 1.1 is shown in Figure 2.1.
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Figure 2.1   Flowchart of the EEM 

 
The algorithm starts with a random distribution of a specified number of solid 

isotropic elements (with ρ =1.0), consistent with the desired volume fraction V0 in the 

design domain. The solution is generally not sensitive to the choice of initial topology 

and any distribution resulting in V = V0 is acceptable. All void elements are given a non-
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dimensional density of 0.001. With the initial topology identified, a static FEA is 

performed to find the strain energy distribution among the finite elements as well as the 

total strain energy of the structure as a whole. Based on the selected value for the number 

of exchange elements, NEE, the algorithm performs a so-called element exchange 

operation. The NEE solid elements with the lowest strain energy amongst the solid 

elements are converted into void elements (ρi = ρmin) while a volumetrically equivalent 

number of void elements with the highest strain energy amongst the void elements are 

converted into solid elements (ρi = 1) such that the volume fraction remains fixed. 

Depending upon the domain geometry, it may be possible to set the number of solid-to-

void and void-to-solid element conversions equal or different as long as the volume 

fraction is kept constant. Ordinarily, the revised topology following the element exchange 

step will have a lower strain energy value, although it is possible to have an opposite 

trend in some iterations. Strain energy convergence in EEM is described in more detail in 

the next chapter. The updated topology is analyzed again to find the new values for strain 

energy distribution and the overall compliance. Once again the solid and void elements 

with the extreme strain energy amongst each set are exchanged and the procedure 

continues until the overall compliance value converges to its minimum value. Here, 

convergence is defined as a nearly stationary topology with changes in the strain energy 

below the specified threshold. As in the case of the other stochastic methods, a limit is 

imposed on the number of iterations to stop the program when the selected convergence 

criterion is too tight. The algorithm is readily applicable to any two- or three-dimensional 

domain and boundary conditions, irrespective of its geometric or loading complexity. 
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Figure 2.2 schematically shows the evolution of the topology during optimization 

process in EEM. 

 

 

 

 
 

Figure 2.2   Evolution of the topology in EEM from the beginning (1st iteration) to the 
end (144th iteration) 

 
 
Although the EEM algorithm pushes the topology towards minimum-compliance, 

the basic element exchange operation alone may not prevent the development of 

undesirable checkerboard patterns or the possibility of back and forth oscillation in a 

subset of elements from solid to void back to solid in repeated iterations. However, with 
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the help of additional operations—which will be described next—these problems are 

eliminated. 

 

Element exchange strategy 

As stated earlier, in each iteration a number of solid elements will give their 

position to void elements and vice versa.  

If the number of exchanging elements (NEE) is set to a large number, the near-

optimum topology will start to form quickly, but it will not converge. This is because at 

the beginning of the procedure a large number of solid elements will be exchanged with a 

large number of void elements in such a way that will drastically decrease the strain 

energy of the structure resulting in a better topology. However, as EEM procedure is 

continued, the same number of elements (which is large) will be switching places in the 

remaining iterations. That will lead to an oscillatory behavior in the formation of final 

topology. 

On the other hand, if NEE is set to a small number, the topology will evolve to its 

optimum state in an extremely slow manner with respect to the mesh size of the problem. 

It would also be less capable of finding the best optimum solution due to limited number 

of elements that can be altered in the EEM process. 

Therefore, a viable element exchange strategy is to gradually decrease the NEE 

value when the solution is nearing convergence. In the first iteration (k = 0), NEE is set 

equal to Nmax with a gradual reduction toward a specified minimum Nmin by following the 

relationship 
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max min
maxint

EE

k

s

N NN N k
N

⎡ ⎤⎛ ⎞−
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
      (2.1) 

where k and Ns denote the iteration counter and the maximum number of steps required 

for NEE to gradually decrease from its maximum to minimum value. 

 

Checkerboard control 

Depending on the specified volume fraction and the proximity of strain energy 

levels for different distributions of the same volume of material, it is possible to 

encounter a checkerboard pattern. In Figure 2.3, the arrows mark the checkerboard 

regions, which can be verbally described as void/solid elements that do not share their 

edges with similar elements. 

 

 

 
Figure 2.3 Illustration of checkerboard pattern34 

 
Diaz and Sigmund18 showed that the checkerboard pattern occurs because it has a 

numerically induced (artificially) high stiffness compared with a material with uniform 

material distribution. The easiest way to prevent checkerboard is to use higher order 

elements (8- or 9-node elements for 2-dimensional cases).18,19 This, however, increases 

the computational time drastically.9 There are several checkerboard-prevention schemes 
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that are almost all based on heuristics.8 Smoothing the optimal topology (with 

checkerboard) using image processing techniques is one of these methods and should be 

avoided since it ignores the underlying problem.9,10 Another technique which is one of 

the most popular methods to remove checkerboard regions is filtering. Sigmund9 

introduced the checkerboard prevention filter based on filtering techniques from image 

processing. He modified the design sensitivities used in each iteration of the algorithm for 

solving the discretized problem.9,17 The filter makes design sensitivity of each element 

dependent on a weighted average of that specific element and its eight neighboring 

(contacting) quadrilateral elements. 

Since EEM is not a gradient-based method, it is not possible to use filtering 

techniques that rely on design sensitivities. To eliminate the checkerboard problem in 

EEM, first the solid checkerboard elements are identified and converted into void 

elements (Figures 2.4 (c,d)), and then the void checkerboard elements are converted into 

solid elements (Figures 2.4 (d,e)). Then, to maintain the specified volume fraction, the 

difference between the number of the switched solid and void elements are randomly 

redistributed in the design domain. It is possible for this random redistribution to result in 

the creation of small checkerboard regions. However, as EEM procedure is continued, 

these regions tend to gradually diminish before the final topology emerges. 
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Figure 2.4   a) solid checkerboard, b) void checkerboard, c) topology before checkerboard 

control, d) after solid checkerboard elimination and e) after void 
checkerboard elimination 

 

Since in the early iterations the basic topology of the structure has not yet 

emerged, the checkerboard control is delayed. In other words, in early iterations, the 

checkerboard regions are not formed because of the FE numerical problems but mostly 

formed because of random distribution of solid elements. So they are not artificially 

induced stiff regions but randomly distributed checkerboard elements. Therefore, the 

checkerboard control function in EEM is called after a set number of iterations, defined 

by the “checkerboard step size”, Lc, have been completed. This step size is a small 

fraction of the user specified maximum iterations. 
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Random shuffle 

After a number of iterations have been completed, it is possible for EEM to 

occasionally encounter a condition where the same sets of solid and void elements switch 

places in consecutive iterations. To eliminate this problem, a random perturbation or 

shuffle of a subset of solid and void elements is performed after a specified number of 

iterations. This action is analogous to the mutation operation in GA or craziness move in 

PSO.25 Although the random shuffle will not violate the volume fraction constraint, it is 

likely to cause an abrupt change in the total strain energy due to the redistribution of the 

solid elements and the potential variation in the structural stiffness.35 It is also likely to 

lead to the creation of new checkerboard regions, which would need to be eliminated in 

the subsequent steps. The number of elements to be exchanged randomly, NR is not 

constant but varies according to a relationship similar to equation 2.1. Random shuffle 

also has its own “random step size”, LR that identifies the points during the iteration 

process where it is performed. 

 

Passive elements 

Some continuum structures may contain both designable and fixed subregions. 

The latter may be in the form of fixed holes or cutouts and/or fixed solid parts whose 

geometry and locations, because of some design or manufacturing constraints, cannot be 

altered during topology optimization. As a matter of convenience and meshing simplicity 

(or design requirement), the fixed voids (or solids) are represented by a series of passive 

elements with ρi = ρmin (or ρ = 1.0). The passive elements will not be exchanged during 

the EEM solution process. 
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Convergence criteria 

Increasing the number of iterations in EEM will usually lead to a more refined 

optimal topology but at the expense of more function calls (i.e., additional FE solutions). 

Besides imposing a limit on the maximum number of iterations, two additional criteria 

are also used to establish a two-part convergence condition in EEM-based topology 

optimization.  

The first criterion considers the relative difference in the element strain energy 

distributions in two consecutive “elite topologies”. Here, elite topology refers to the 

topology with the lowest strain energy obtained prior to the current iteration in the EEM 

procedure. Since it is possible for two distinctly different topologies to have almost equal 

total strain energies (Figure 2.5), it is necessary to compare the element strain energy 

distribution, as represented by the vector %E , for two consecutive elite topologies as 

ce pe
E

pe

ε≤
% %

%

-E E

E
         (2.2) 

where subscripts “ce” and “pe” refer to the current and previous elite topologies within Ns 

iterations, respectively. 

 

The second convergence criterion examines the density (design variable) 

distribution in two consecutive elite topologies. The domain topology is defined by 

vector %D  whose individual terms have binary values depending on the solid (1) or void 

(0) property of the corresponding elements. Based on this definition, the convergence 

criterion is defined as 
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ce pe
t

pe

ε≤
% %

%

-D D

D
         (2.3) 

 

          
  

a) E = 196.3     b) E = 196.4 
 

Figure 2.5   Two different topologies with nearly identical strain energy values 
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CHAPTER III 

RESULTS AND DISCUSSION 

 

Two-dimensional cases 

Several benchmark problems are used to evaluate the performance of EEM and to 

compare the results with those obtained from some other methods. Each two-dimensional 

design domain is defined according to nx, ny, V0 values representing the number of finite 

elements in the x and y directions and the limit on volume fraction, respectively. 

Hereafter, strain energy refers to the non-dimensional strain energy since the nodal 

displacements and element stiffness are normalized with respect to the element size and 

the material stiffness. The iteration number (Itr.) for EEM based results coincides with 

the number of FE analyses performed in the optimization process. 

 

A. Simply-supported beams 

 

Model 1: Single force applied on top 

 
The simply-supported Messerschmitt-Bölkow-Blohm (MBB) beam36 model and 

loading shown in Figure 3.1 is optimized for minimum compliance. Due to the overall 

symmetry, the computational model represents one half of the physical domain. For (nx, 
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ny, V0) = (60, 20, 0.5), it takes 235 iterations for EEM to produce a 1-0 topology as shown 

in Figure 3.1 with total strain energy of 191.5. 

The SIMP based optimal topology is also shown in Figure 3.1 for comparison. 

The SIMP results are obtained using the algorithm provided by Sigmund.17 The filtered 

optimal topology of SIMP is obtained after 94 iterations with the filtering radius of 1.5, 

and the strain energy of 203.3. Each iteration in SIMP consists of one FEA, sensitivity 

analysis, and filtering operation, with FEA being the most computationally expensive 

part of the iteration. 

 
 

ny 

nx 
F

 
  F/2

 

 
 

Figure 3.1   Optimal topologies of MBB-beam using SIMP method (left) and EEM (right) 

 
It should be noted that due to the stochastic nature of EEM, the optimal topology 

and the corresponding number of iterations may vary from one EEM solution to another. 

However, in each solution, the final topology represents an optimum distribution of 

material and the resulting value for total strain energy can be used to identify the best 

possible topology among the solutions obtained. Figure 3.1 may be an evidence for the 

flatness and noisiness of the solution of the topology optimization problem which has 

x 

y 
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been discussed in the introduction. The two final topologies are not the same but their 

strain energies are fairly close. 

Additional points to consider in this comparison is that while the filtering 

technique in SIMP topology is mesh dependent and quite sensitive to the choice of 

filtering radius r, EEM uses no filtering and its mesh dependency is only tied to the use of 

FEA. 

Also, due to the stochastic nature of EEM, it is possible to find optimum solutions 

that are different from the SIMP based solutions but with similar or sometimes smaller 

compliance. It is also worth mentioning that with SIMP, starting with different non-

uniform initial designs (randomly distributed solid-void elements with the same volume 

fractions) may lead to different solutions (local minima). These characteristics are 

demonstrated by the designs in Figure 3.2 and Table 3.1 using a fine mesh with (nx, ny, 

V0) = (90, 30, 0.5). While in Table 3.1 all the SIMP solutions are based on an initial 

design having a uniform density distribution throughout the domain, the EEM solutions 

are based on random distributions of solid and void elements in the initial design for the 

specified volume fraction of 50%. 
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E=190.3, Itr.=130  E=192.2, Itr.=200 
 
 

  
 

E=192, Itr.=126   E=193, Itr.=123 
 

Figure 3.2   SIMP results starting from 4 different random distributions of 0-1 densities 
 

Table 3.1 

Optimal topologies using EEM and SIMP 

EEM SIMP 

 

Itr.=192, ET = 201.3 

 

r=1, Itr.=33, ET = 201.3 

 
Itr.=227, ET =191.4 

 
r=1.2, Itr.=45, ET =194.8 

 
Itr.=210, ET =187 

 
r=2, Itr.=29, ET =204.1 
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Model 2: Single force applied at the bottom 
 

A simply-supported beam with (nx, ny, V0) = (50, 50, 0.4) is optimized using EEM 

with the results shown in Table 3.2.  The results reported by Wang and Wang37 using the 

gradient-based level set method with (nx, ny, V0) = (61, 62, 0.31) is also shown in Table 

3.2 for comparison. The strain energy of the EEM based solution is 33.4. 

 
Table 3.2 

EEM compared with level set method 

Design domain & Boundary conditions 

F

X 

Y 

 
 

Method EEM Level Set37 

Itr. 146 200 

Topology 

  
 

Unfortunately the non-dimensional strain energy in the level set method has not 

been reported. However, by dividing the final value of the strain energy from their plot of 

strain energy convergence history by the applied force and assumed elastic modulus, we 

obtain a non-dimensional strain energy of about 34, which is nearly equal to the value 

found using EEM. 
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Model 3: Model 2 with modified boundary conditions 
 

The roller support on the right side of the beam in Model 2 is replaced by a pin 

support preventing the beam from having any horizontal displacement at the supports. 

The change in the boundary condition affects the optimum topology as shown in Table 

3.3. The result from EEM with (nx, ny, V0) = (50, 50, 0.4) is compared with that reported 

in the literature by Wang and Wang37 using the level set method with (nx, ny, V0) = (61, 

62, 0.31) and by Querin et al.27 using BESO with (nx, ny, V0) = (31, 32, 0.25). 

 
Table 3.3 

EEM compared with level set method and BESO 

Design domain & Boundary conditions 

Method EEM Level Set37 BESO27 

Itr. 104 140 47a 

Topology 

   
aThe reported “steady state” number. Total number of FE solutions not specified. 

 
 
Since all the topologies resulted from the three different methods in Table 3.3 are 

similar, we can conclude that they have the same strain energy. It should be noted that 

when two topologies are similar, one may simply conclude that their strain energies are 

the same, but the converse conclusion may not be drawn. In other words, if two 
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topologies have the same strain energy level, it does not necessarily mean that they look 

like each other (see Figure 2.5). 

 
 

B. Cantilevered beams 

 

Model 1: Single tip load at the bottom 
 

Table 3.4 shows the cantilevered beam and loading condition with EEM results 

compared with those based on the SIMP method for a volume fraction of 40%. In the 

case of the SIMP, the results are based on the filtering radius of r = 1.2. While the 

optimal strain energy values are comparable, the total iteration numbers are different. As 

a result of mesh refinement, the optimal topology changes with minimal change in the 

final strain energy. 

 
Table 3.4 

Optimal topologies using SIMP method and EEM 

Design domain & Boundary conditions 
 

 

Y 

X 

F 

 
(nx, ny, V0) 

Coarse mesh 
(32, 20, 0.4) 

Fine mesh 
(64, 40, 0.4) 

Method EEM SIMP EEM SIMP 
Strain 
Energy 53.6 57.4 57 55.7 

Itr. 178 71 174 57 

Topology 
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Comparing the results from SIMP, one may observe that although the topologies 

are not similar to each other, their strain energies are very close to each other. It is a good 

case to observe the flatness of the solution in a general topology optimization problem. 

This feature of the problem is more observable when one compares the final topologies of 

EEM and SIMP with a finer mesh since they look very different but with nearly the same 

strain energy. 

 

Model 2: Single tip load at the middle 
 

The beam model and corresponding topology optimization results are shown in 

Table 3.5. Two different mesh densities are considered for EEM resulting in slightly 

different topologies. The results reported by Wang et al.38 based on the enhanced GA 

approach are also shown in Table 3.5 for comparison. Although the final geometry and 

strain energy values are nearly the same, the EEM solution converges much faster. 

Jakiela et al.39 state that, in general, GA based solutions may require 10 to 100 times the 

number of function evaluations as would be required by homogenization based solutions. 

It is notable that the number of function calls (FEA plus any other analysis used in that 

particular method) is in the order of the number of iterations multiplied by the number of 

populations in both GA38 and PSO25 as will be shown next. 
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Table 3.5 

EEM compared with enhanced GA 

Design domain & Boundary conditions 
 

Y

X

F

 
(nx, ny, V0) 

Coarse mesh 
(24, 12, 0.5) 

Fine mesh 
(48, 24, 0.5) 

Method EEM Enhanced GA38 EEM 
Strain 
Energy 66.1 64.4 63.5 

Itr. 150 4×104 250 

Topology 

 
 
A closer look at the EEM results shows a slight deviation from symmetry. Since 

EEM is a stochastic method, and domain symmetry is not enforced in the element 

exchange operation, there is no guarantee to obtain a perfectly symmetric topology even 

when such a topology is expected at the end. To alleviate this shortcoming that is 

prevalent in all stochastic techniques, it is possible to model and use only the symmetric 

portion of the domain, consistent with the loading and support conditions in the problem. 

Even with the lack of a formal mechanism to enforce symmetry in the final topology, it is 

interesting to note the appearance of a nearly symmetric topology in EEM results. 

 

Model 3: Model 2 with modified dimensions 

In this case, the EEM results in Table 3.6 are compared with those based on PSO 

as reported by Fourie and Groenwold.25 As in the previous model, the EEM solution 

converges much faster with no loss of accuracy. 
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Table 3.6 

EEM compared with PSO 

Design domain & Boundary conditions 
 

Y

X

F

 
(nx, ny, V0) 

Coarse mesh 
(20, 47, 0.5) 

Fine mesh 
(40, 94, 0.5) 

Method EEM PSO25 EEM PSO25 
Strain 
Energy 2.96 Not reported 5.1 Not reported 

Itr. 100 105 103 103 

Topology 

  
Continuous Density   

Binary Density

 
 
It should be noted that in both cases of coarse and fine meshes, SIMP and EEM 

give similar results. Another point worth noting is the lack of perfect symmetry in both 

stochastic (EEM and PSO25) results. 

Comparing the results in Tables 3.5 and 3.6 also reveals that changing the 

dimensions of the design domain in a topology optimization problem may completely 

change the optimum topology. 

 
 

Model 4: Model 1 with a circular hole 

The optimal topology for a cantilevered beam with a fixed hole is determined 

using EEM and the SIMP method. In the case of EEM, the hole is modeled using passive 

elements. The results shown in Table 3.7 indicate comparable results, with SIMP at r = 
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1.2 converging faster than EEM. It is worth noting that detailed features that are captured 

by EEM with a coarse mesh only appear in the SIMP results following a mesh 

refinement.  

 
Table 3.7 

Optimal topologies for a cantilever beam with a circular hole 

Design domain & Boundary conditions 
 

Y

X

F

 
(nx, ny, V0) 

Coarse mesh 
(60, 40, 0.5) 

Fine mesh 
(90, 60, 0.4) 

Method EEM SIMP EEM SIMP 
Strain 
Energy 50.48 52.1 51.2 51.9 

Itr. 97 34 171 34 

Topology 

 
 

Comparing the results of Table 3.7 with Table 3.4, one may conclude that the 

presence of passive elements (regions), other than the problem’s dimensions, may also 

drastically change the optimum topology. 

 

Model 5: Opposing loads at the tip 

The optimal topologies for the cantilevered beam model under a bidirectional 

loading condition are given in Table 3.8. The results reveal some interesting features. The 

medium-density middle brace in the SIMP result is replaced by two closely spaced 

members in EEM with nearly the same strain energy values. 
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Refining the mesh clarifies the image as shown in Table 3.8. Whereas in the 

SIMP method it is necessary to adjust the filtering size to obtain the best topology, in 

EEM the solution procedure reveals the most detailed topology that is possible for a 

given mesh density. 

 
Table 3.8 

Optimal topologies for a doubly loaded cantilever beam 

Design domain & Boundary conditions 
  F1=F

F2=F

 
(nx, ny, V0) 

Coarse mesh 
(32, 20, 0.4) 

Fine mesh 
(50, 50, 0.4) 

Method EEM SIMP EEM SIMP 
Strain 
Energy 17.48 17.63 19.6 19.7 

Itr. 73 37 199 37 

Topology 

 
 
 
As seen in Table 3.8, EEM does not yield a perfectly symmetric topology. But 

looking at the strain energies of the EEM and SIMP results, the slight deviation from 

symmetry does not alter the strain energy by any significant amount.   

If the beam is required to support loads F1 and F2 separately (one at a time), then 

the optimal topology will have a different configuration as shown in Table 3.9.  
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Table 3.9 

Optimum topologies for a doubly loaded cantilever beam 

Design domain & Boundary conditions 
  F1=F

F2=F  
(F1 and F2 are applied separately) 

(nx, ny, V0) = (50, 50, 0.4) 

Method EEM SIMP 
Strain Energy 60.9 61.3 

Itr. 104 60 

Topology 

 
 
 

The disappearance of the vertical member on the right side of the EEM-based 

topology reveals that it does not play an important role in the strain energy of the loaded 

structure. Instead, the two diagonal members to the right have more material. It may be 

inferred as an observation of non-uniqueness of the solution in a topology optimization 

problem. 

 

Three-dimensional cases 
 
In order to evaluate the performance of EEM in topology optimization of three-

dimensional structures, some benchmark problems are solved in this chapter.  Each three-

dimensional design domain is defined according to nx, ny, nz, V0 values representing the 

number of finite elements in the x, y, and z directions and the limit on volume fraction, 
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respectively. As in the previous section, the EEM results are compared with those 

reported in the literature. 

 

A. Cubic Domain 
 
A cubic domain is simply supported at its four bottom corners and is loaded by 

four concentrated vertical forces acting at the top surface as shown in Figure 3.3(a). 

Using the EEM procedure with (nx, ny, nz, V0) = (20, 20, 20, 0.08), the optimum topology 

in Figure 3.3(b) is obtained after 178 iterations with a strain energy of 24.1. For 

comparison, the results obtained by Olhoff et al. 40 using the optimum microstructure 

(OM) method is shown in Figure 3.3(c).  The gray regions in the Figure 3.3(c) imply 

intermediate density since the OM method is gradient-based. Also, as in the SIMP 

method, elements with density less than a threshold value are filtered out in the OM 

method to arrive at the final topology. Therefore, the final topology may not match the 

pre-specified volume fraction. 

 

                  

             (a)          (b)             (c) 
 

Figure 3.3   EEM compared with optimum microstructure method40 in three-dimensional 
problems; a) Design domain and boundary conditions, b) Optimum 
microstructures and c) EEM 
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As seen in the results, the four horizontal bars linking the four columns at the top 

appear grey in OM result, whereas in EEM they are solid but with less material instead. 

 

B. Cantilevered Beam 

A tip-loaded cantilevered beam of finite thickness, as shown in Figure 3.4(a), is 

optimized for minimum compliance. The EEM results for (nx, ny, nz, V0) = (25, 17, 6, 0.3) 

and (nx, ny, nz, V0) = (25, 17, 6, 0.1) are shown in Figure 3.4(b,c). The EEM solutions for 

V0 = 0.3 and V0 = 0.1 converge in 206 and 202 iterations, respectively. The OM based 

solutions reported by Olhoff et al.40 for V0 = 0.3 is also shown in Figure 3.4(d). Since the 

elements with non-dimensional density less than 0.8 are removed in the OM solution, the 

actual volume fraction is less than that specified. By reducing the volume fraction in 

EEM, a truss like structure similar to that obtained using the OM method begins to 

emerge. 
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       (a)     (b) 

          
        (c)     (d) 
  
Figure 3.4   EEM compared with optimum microstructure method40 in three-dimensional 

problems; a) Design domain and boundary conditions, b) EEM , Vf = 0.3, c) 
EEM , Vf = 0.15 and d) optimum microstructure, Vf = 0.3 where elements 
with the densities less than 0.8 are filtered out 

 

 
C. Clamped-Clamped Beam 

A clamped-clamped beam is loaded in the middle by a concentrated bending 

moment as shown in Figure 3.5(a). The EEM results for (nx, ny, nz, V0) = (50, 10, 10, 0.3) 

and (nx, ny, nz, V0) = (50, 10, 10, 0.08) are shown in Figure 3.5(b, c). For the OM based 

solution shown in Figure 3.5(d), the elements with density less than 0.5 are removed. For 

the same reason stated earlier, the actual volume fraction is less than the specified value 

of 0.3. Figure 3.5(c) shows that EEM result is sensitive to the direction of the applied 

moment. It is not clear if a similar sensitivity also exists in the OM based solutions at a 
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lower volume fraction values. For the solutions in Figure 3.5(b,c), the number of 

iterations is found to be 197 and 206, respectively.  

 

          
       (a)     (b) 

          
        (c)     (d) 
  
Figure 3.5   EEM compared with optimum microstructure method40 in three-dimensional 

problems; a) Design domain and boundary conditions, b) EEM , Vf = 0.3, c) 
EEM , Vf = 0.15 and d) optimum microstructure, Vf = 0.3 where elements 
with the densities less than 0.5 are filtered out 

 

 
D. Automobile Control Arm 

The geometry shown in Figure 3.6(a) is a generic model of an automobile control 

arm as described in Ref. [41].  While the triangular region in the middle can be altered 

through topology optimization, the three corner regions (knuckles) are held fixed with the 

specified boundary conditions. The EEM solution based on (nx, ny, nz, V0) = (26, 40, 12, 

0.1) is shown in Figure 3.6(b) with a final strain energy of 4.5764e4. Since the design 

domain is symmetric, only the upper half of the final topology is considered and shown 
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for clarity. The optimization result in Figure 3.6(c) is obtained using a commercial 

software tool as reported in Ref. [41]. In Figure 3.6(c), the elements with density less 

than 0.15 are removed and the resulting geometry is post-processed to obtain a smoother 

shape.   

The topology optimization domain for the EEM problem is shown in Figure 3.7. 

Unlike the model in Ref. [41], the design domain in EEM is modeled as a simple 

rectangular box surrounded by three smaller regions of passive elements. Based on a 

random distribution of solid elements, the EEM solution is found following 228 

iterations. 

 

X
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Fy            
       (a)    (b)     (c) 

 
Figure 3.6   Topology optimization of a control arm; a) FE model41, b) using EEM and c) 

using OptiStruct41 software 
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Figure 3.7   Starting point (random distribution of the solid elements) for the control arm 

problem in EEM 
 
 

Topology optimization with damaged elements 
  
In some manufacturing processes (e.g., sand casting), it is possible for some 

regions of the product to be porous, defective or otherwise damaged in terms of material 

properties. In order to consider the presence of such regions and explore their influence 

on the optimal topology, several variations to the original topology optimization problem 

with homogeneous and isotropic material have been considered. Here, a damaged 

element is defined as one with elastic modulus equal to a fraction of that of a perfect 

element (e.g., Ed = 0.1E or Ed = f E where f is a random number between 0.01 and 0.9). It 

should be noted that the damaged elements are treated similar to the passive elements 

with no participation in the element exchange process.  

Figure 3.8 shows the results for the case of the tip-loaded cantilevered beam 

discussed previously in Table 3.5. In the first case, the topology optimization problem is 
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solved without any damaged elements with the final topology as shown in Figure 3.8(a). 

If there is some control over the placing of damaged elements, then their optimum 

locations will be those shown as grey elements in Figure 3.8(b). In this case, the optimum 

locations for damaged elements are the locations of solid elements with the lowest level 

of strain energy, which result in a minimum loss of stiffness. If a specified number of 

damaged elements are randomly distributed in the optimum topology, then Figure 3.8(c) 

would be the outcome.  The strain energy and the volume fraction of solid (undamaged) 

elements are shown below each model in Figure 3.8. It is important to note that in Figures 

3.8(b) and (c), the damaged elements simply replace the existing solid elements in the 

optimum topology shown in Figure 3.8(a). Hence, their influence was not captured 

during the topology optimization process. 

Two cases have been studied to optimize the topology with the presence of 

randomly distributed damaged elements. In the first case, the reduction of the total 

volume fraction due to the presence of damaged elements has not been compensated with 

the additional solid elements, whereas in the second case, the total volume fraction is kept 

constant by adding the equivalent number of solid elements. The outcome for the first 

case is shown in Figure 3.8(d).  Comparing the topology and the strain energy of this case 

with Figure 3.8(a), one may conclude that the random distribution of damaged elements 

would not affect the final topology but increases the strain energy of the structure. This 

seems to be the natural outcome of the reduced stiffness of the structure. However, the 

reduced stiffness can be compensated with additional solid elements to keep the total 

volume fraction constant. This will slightly change the material distribution as shown in 

Figure 3.8(e), but significantly reduces the strain energy. 
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    (a)   (b)  

  
    (c)   (d) 

 
(e) 

 
Figure 3.8.   a) Optimum topology with no damaged elements (ET = 32.6), b) optimum 

arrangement of damaged elements, c) random distribution of damaged 
elements, d) Optimum topology with an initial random distribution of 
damaged elements (ET = 42.7) and e) Optimum topology with an initial 
random distribution of damaged elements and compensated volume fraction 
(ET = 35.7), (in cases (a-d); Vf = 0.5, Vf _damaged = 0.2, f = 0.2, in case (e); Vf = 
0.6) 

 

As a result, one may conclude that the presence of randomly distributed damaged 

elements may have a local effect on the material distribution but the overall topology 

remains unaffected. 

 

Strain energy analysis of the elements 
 
As mentioned earlier, the main challenge in EEM is the required number of 

function calls (FEA plus additional procedures such as filtering). Although this number is 



 

48 

considerably less than those reported for enhanced GA38 and PSO25, it tends to be higher 

than that in the SIMP method. In each iteration of the EEM algorithm, the element 

exchange operation takes only 5% of the CPU time with the remaining time spent on 

solving the FE problem. In pursuit of an approach to make EEM more computationally 

efficient, we are faced with the following question: 

Is it possible to predict the variation in strain energy of the structure by just focusing 

on the elements that are being exchanged from one iteration to the next and those in their 

neighborhoods instead of performing an FEA of the whole structure? 

To answer this question, the effect of an element exchange on a far-field as well 

as a neighborhood element has been investigated. Table 3.10 gives the strain energies of 

the target element at coordinates (X,Y)t as well as that of the whole structure before and 

after a solid element at (X,Y)s is exchanged with a void element at (X,Y)v. The domain 

topologies before and after each element exchange are shown in Table 3.11 with the 

exchanged elements highlighted by square boxes. 

 
Table 3.10 

Energy variation in a target and the whole domain due to solid-void exchange of an 
arbitrary element 

 
  

Case 
#   

  
Iteration 

# 

  
(X,Y)t 

  
(X,Y)s 

  
(X,Y)v 

  Et before   Et after   Ewhole 
before 

  Ewhole 
after 

1 
2 
3 
4 
5 
6 
7 
8 

149 
149 
149 
21 
50 
6 

120 
120 

(2,2) 
(2,2) 
(4,7) 

(2,16) 
(2,2) 
(2,2) 
(2,2) 
(2,2) 

(1,6) 
(2,10) 
(2,10) 
(10,3) 
(2,3) 

(5,17) 
(12,11) 

(2,3) 

(15,19) 
(15,5) 
(15,5) 
(8,18) 
(17,3) 
(15,5) 
(15,5) 

(13,11) 

5.19E-01 
5.19E-01 
3.95E-02 
4.86E-04 
4.84E-01 
5.99E-01 
4.81E-01 
4.81E-01 

6.25E-01 
5.56E-01 
1.90E-02 
1.06E-01 
8.14E-01 
1.41E+01 
9.91E-01 
7.24E-01 

3.17E+01 
3.17E+01 
3.17E+01 
3.79E+02 
1.05E+02 
7.34E+01 
4.28E+01 
4.28E+01 

3.23E+01 
3.20E+01 
3.20E+01 
1.01E+02 
1.05E+02 
1.31E+03 
3.34E+03 

 4.25E+01 
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The topology optimization problem selected for this investigation is that of a 

cantilevered beam (Table 3.4) with (nh, nv, V0) = (20, 20, 0.4). In Table 3.11, eight 

different cases are examined with the corresponding iteration numbers at which the 

exchange is made also identified. 

The results indicate that the strain energy of the structure as well as that of each 

element is mainly affected by the integrity of the structure. In other words, if a critical 

solid element is removed from the load path, the total strain energy of the structure 

increases tremendously (Cases 6 and 7). Conversely, if an element connects two 

disconnected parts of the structure to construct a necessary load path, it will greatly 

decrease the total energy of the structure (Case 4). In all cases in Table 3.11, the change 

in strain energy does not depend on how close or how far the exchanged elements are to 

the target element. Hence, it appears that it is not possible to predict the variation in the 

strain energy of the structure by just focusing on the vicinity of the elements being 

exchanged, and we have to analyze the whole structure in each iteration. 
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Table 3.11 

Topologies corresponding to each element exchange 

 

 
 

Strain energy convergence 
 
Figure 3.9 shows how the strain energy in EEM converges to its minimum value 

for the doubly loaded cantilevered beam case (see Table 3.8). It starts from extremely 
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large value because of the randomly distributed elements in the initial step. However, 

after a few iterations, the strain energy reduces to nearly the same order as its minimum 

value. At this stage, a reasonable load path between the loading points and supports has 

been constructed, but the topology of the structure is not refined yet. The continuation of 

the element exchange will refine the topology toward nearly its minimum strain energy. 

Although there might be some jumps to some higher level during EEM, the overall trend 

of the strain energy is descendent. The large spikes in the energy convergence plot in 

Figure 3.9 are mostly attributed to the random shuffle operations in the EEM procedure. 

 

 

 
Figure 3.9   Energy convergence in EEM; rapid convergence from high energy (left) and 

slow convergence in low energy (right) 
 

 
Effect of EEM parameters on the solution 

 
The EEM parameters including the maximum number of iterations Ns, number of 

elements to be exchanged NEE, the step sizes for checkerboard Lc, random exchange LR, 

and iteration number to start the checkerboard control (ic) have to be initially specified. 

All other parameters are calculated from these parameters and the problem inputs 
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(number of elements, volume fractions, etc.). The higher the value of Ns and the more 

rigorous the convergence parameters (ε’s) are, the lower the final value of strain energy, 

but certainly at the expense of higher computational time. Based on our experience, 

choosing Nmax ~ 5- 10% and Nmin ~ 0.2-0.4% of the solid elements would be appropriate. 

Starting from larger Nmax value would be similar to a larger coefficient for the particle’s 

velocity in PSO25 and increases the craziness of the search at the beginning steps. This 

will make finding the global optimum more probable but less computationally efficient. 

On the other hand, small Nmin value makes the solution easier to converge at the very end 

and provides a more definite final topology. However, for the convergence criteria to 

make more sense, we should put smaller ε’s that will consequently increase the number 

of iterations. The step size for random distribution is better set higher in the problems 

with large number of solid elements or large Ns because in these situations, EEM is less 

likely to get trapped in a loop (see Element Exchange Strategy part of the EEM 

algorithm). The checkerboard control, however, should be called in about every 5% of 

maximum iterations. The values selected for all of these parameters can be adjusted and 

reasonable deviations from the suggested values may not dramatically affect the final 

results. 

 

Limitations of EEM 
 
As with many other methods, EEM has its own limitations; some of them can be 

eliminated in future improvements of the method while others may not. In its present 

implementation, using quadrilateral elements is a necessity for the checkerboard 

elimination part of EEM unless another definition of checkerboard is introduced.  
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As in the case of GA, EEM will not work for very low volume fractions because 

of the connectivity problem. If the volume fraction is so low and the selected element size 

is so large that they may not connect the loaded points to the supports, then exchanging 

the elements may not lead to an optimum topology. Because the topologies obtained from 

the exchanging procedure are not close enough to the solution domain. This problem is 

easy to fix though; EEM can start from a large enough volume fraction, and after finding 

a solution, the design domain can be replaced by the regions which have been occupied 

with the solid elements of the previous solution. Now, the new problem with a new (large 

enough) volume fraction in the new design domain will be solved. These procedures 

continue until we come up with a solution having the desired total low volume fraction 

(which is the multiplication of all the volume fractions applied in each step). 

EEM is not an optimization method in a mathematical programming sense. In 

addition, it is a stochastic technique. These two features, together with the flatness and 

noisiness of the topology optimization problem cannot guarantee that EEM-based 

solution is an exact optimum. It also may yield multiple solutions for a single problem 

when the solutions have very close strain energies as shown in the results.  

Since EEM is based on the effectiveness of the individual finite elements, any 

other objective function or constraint to be considered in the topology optimization 

problem should be defined so that it is distributable among the elements. In other words 

each element should have a quantity to be compared with other elements representing its 

influence on the objective function or design constraint. 
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

 

A new stochastic direct search topology optimization method has been developed 

and used for compliance minimization problems subject to a volume fraction constraint. 

The non-dimensional density of each finite element is treated as a binary design variable 

with a linear element density-stiffness relationship. The basic principle behind the 

proposed method is that by exchanging the low-strain-energy solid elements with the 

high-strain-energy void elements from one iteration to the next, an optimum topology 

will emerge. The Element Exchange Method (EEM) provides converged solutions 

resulting in minimum strain energy. However, depending on the selected mesh density 

and the desired level of clarity in the final topology, the number of iterations required for 

convergence may vary. Through the solution of several two- and three-dimensional 

example problems, the accuracy and efficiency of EEM were examined and compared 

with different gradient and non-gradient methods reported in the literature. The presence 

of damaged elements in the resulted topology has also been studied. It has been shown 

that randomly distributed damaged elements change the local distribution of material 

without significantly altering the topology of the optimum structure.  

In general, the EEM method is easy to implement and can be directly coupled 

with any FE code. Unlike the gradient-based methods, it requires no filtering and the 
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resulting solid-void solution satisfies the imposed volume fraction. The checkerboard 

control and the random shuffle algorithms help increase the solution fidelity and 

accuracy. Although EEM is not as efficient as the SIMP method, it is found to be 

significantly more efficient than many other non-gradient methods reported in the 

literature such as GA and PSO. 

One potential topic for future work is to investigate the inclusion of stress, 

displacement, or frequency constraints on the EEM procedure. Besides compliance 

minimization, the maximization of the fundamental frequency could also be considered in 

an EEM-based optimization problem. In considering other objective functions and design 

constraints, it is important to properly model the contribution of each element to the 

selected response function. 

Improving the computational efficiency of EEM is another important area for 

future work. Linking the EEM procedure to a finite element code and using some more 

efficient computational methods such as parallel algorithms may enable the application of 

EEM to more complex engineering problems with a very large number of elements and 

geometric requirements. 
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APPENDIX 
 

MATLAB7.0 CODE* FOR A CANTILEVERED BEAM WITH A CIRCULAR HOLE  

(SEE TABLE 3.7)
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The author acknowledged the FEA part of the code provided by Sigmund.17 
 
function topen(nelx,nely,volfrac); 
volfrac = 0.45; 
nelx = 70; 
nely = 45; 
xmin = 0.001; 
vol = nelx*nely*xmin; 
x(1:nely,1:nelx) = xmin; 
xbest(1:nely,1:nelx)= 0; 
enbest(1:nely,1:nelx) = 0; 
delta_x = 1000; 
delta_e = 1000; 
enormalized = 100; 
cold = 0.; 
cbest = 1e10; 
c = 0.; 
cnew = 1; 
loopmax = 150; 
randstep = 7; 
chbstep = 4; 
stchb = 20;%start checkerboard 
nreemax = 50; 
nreemin = 5; 
nree = nreemax; 
neemax = 50; 
neemin = 5; 
neegdstep = 7; 
nee = neemax; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (Start) Defining the design domain%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for ely = 1: nely 
    for elx = 1:nelx 
        if (sqrt((ely-nely/2.)^2+(elx-nelx/3.)^2) < nely/3) 
            passive(ely,elx) = 1; 
            x(ely,elx) = xmin; 
        else 
            passive(ely,elx) = 0; 
        end 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%(End)Defining the design domain %%%%%%%%%%%%%%%%%%%%%%%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
(Start) Random distribution of the elements in the design domain with specified volume 
fraction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
while vol < volfrac*nelx*nely 
        l = 1 + round(rand*(nely-1)); 
        k = 1 + round(rand*(nelx-1)); 
        if ((x(l,k) < 0.5) & (passive(l,k) == 0)); 
           x(l,k) = 1; 
           vol = vol + x(l,k);             
        end 
end 
xbest = x; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
(End) Random distribution of the elements in the design domain with specified volum 
fraction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
gdst = 0; 
loop = 0; 
gdstpsize = (loopmax/neegdstep); 
kd = 0; 
tic; 
while ((loop < loopmax+100 & (delta_x > 20 | enormalized > 0.001)) | (delta_x == 0) ) 
    loop = loop +1 
    gdst = floor(loop/gdstpsize)-floor((loop-1)/gdstpsize); 
    if gdst > 0 
        kd = kd+1; 
        nee = max (floor(neemax - kd*(neemax-neemin)/(neegdstep)),neemin) 
        nree = max(floor(nreemax - kd*(nreemax-nreemin)/(neegdstep)),nreemin) 
    end 
     
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%(Start) After "randstep" iterations "nree" elements will be exchanged from "xmin" to 
"1" and vice versa%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%% 
crzns = fix(floor((loop)/randstep)/((loop)/randstep)); 
 if crzns > 0.5 
     for m = 1:nree 
         rndy = 1 + round(rand*(nely-1)); 
         rndx = 1 + round(rand*(nelx-1)); 
         while (x(rndy,rndx) > 0.5 | passive(rndy,rndx) == 1) 
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             rndy = 1 + round(rand*(nely-1)); 
             rndx = 1 + round(rand*(nelx-1)); 
         end 
         x(rndy,rndx) = 1; 
     end 
      
      
     for n = 1:nree 
         rndy = 1 + round(rand*(nely-1)); 
         rndx = 1 + round(rand*(nelx-1)); 
         while (x(rndy,rndx) < 0.5 | passive(rndy,rndx) == 1) 
             rndy = 1 + round(rand*(nely-1)); 
             rndx = 1 + round(rand*(nelx-1)); 
         end 
         x(rndy,rndx) = xmin; 
     end 
 end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%(End) After "randstep" iterations "nree" elements will be exchanged from "xmin" to 
"1" and vice versa %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%(Start) After "chbstep" iterations checkerboard elements will be randomly redistributed 
in their pair locations  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
chb = fix(floor((loop)/chbstep)/((loop)/chbstep))*max(1,stchb/loop); 
nchb_s = 0; 
xychb_s = zeros(nely,nelx); 
nchb_v = 0; 
xychb_v = zeros(nely,nelx); 
 if chb > 0.5 
     for m = 2:nely-1 
         for n = 2:nelx-1 
             if ((x(m,n)>0.5) & (x(m,n-1)<0.5) & (x(m,n+1)<0.5) & ... 
                     (x(m-1,n)<0.5) & (x(m+1,n)<0.5))  
                            nchb_s = nchb_s +1; 
                            xychb_s(m,n) = 1; 
             end 
             if ((x(m,n)<0.5) & (x(m,n-1)>0.5) & (x(m,n+1)>0.5) & ... 
                     (x(m-1,n)>0.5) & (x(m+1,n)>0.5))  
                            xychb_v(m,n) = 1; 
             end 
         end 
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     end 
     for i = 2:nely-1 
         for j = 2:nelx-1 
             if (xychb_s(i,j) == 1) 
                 x(i,j) = xmin; 
             end 
             if ((xychb_v(i,j) == 1) & (xychb_s(i+1,j) ~= 1) &... 
                     (xychb_s(i-1,j) ~= 1)& (xychb_s(i,j+1) ~= 1) &... 
                     (xychb_s(i,j-1) ~= 1)) 
                 x(i,j) = 1; 
                 nchb_v = nchb_v + 1; 
             end 
         end 
     end 
 end 
 if (nchb_s > nchb_v) 
     for m = 1:(nchb_s-nchb_v) 
         rndy = 1 + round(rand*(nely-1)); 
         rndx = 1 + round(rand*(nelx-1)); 
         while (x(rndy,rndx) > 0.5 | passive(rndy,rndx) == 1) 
             rndy = 1 + round(rand*(nely-1)); 
             rndx = 1 + round(rand*(nelx-1)); 
         end 
         x(rndy,rndx) = 1; 
     end 
 end 
 if (nchb_v > nchb_s) 
     for n = 1:(nchb_v-nchb_s) 
         rndy = 1 + round(rand*(nely-1)); 
         rndx = 1 + round(rand*(nelx-1)); 
         while x(rndy,rndx) < 0.5 
             rndy = 1 + round(rand*(nely-1)); 
             rndx = 1 + round(rand*(nelx-1)); 
         end 
         x(rndy,rndx) = xmin; 
     end 
 end 
  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%(End) After "chbstep" iterations checkerboard elements will be randomly redistributed 
in their pair locations %%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% FE-ANALYSIS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  [U]=FE(nelx,nely,x); 
% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS%%%%%%%%%%%% 
  [KE] = lk; 
  elymax_v = zeros(1,nee); 
  elxmax_v = zeros(1,nee); 
  enmax_v = zeros(1,nee); 
  elymin_s = zeros(1,nee); 
  elxmin_s = zeros(1,nee); 
  enmin_s = 1e10*ones(1,nee); 
  cold = c; 
  c = 0.; 
  en(1:ely,1:elx) = 0; 
  for ely = 1:nely 
    for elx = 1:nelx 
      n1 = (nely+1)*(elx-1)+ely;  
      n2 = (nely+1)* elx   +ely; 
       Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1); 
       c = c + x(ely,elx)*Ue'*KE*Ue; 
       en(ely,elx) = x(ely,elx)*Ue'*KE*Ue; 
        
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      
 %(Start) Sort the energy of the elements and keep "nee" elements to be exchanged with 
their pairs%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     if x(ely,elx) < 0.5  
          if (enmax_v(1,nee) < en(ely,elx) & passive(ely,elx) == 0) 
              for i = 1:nee-1 
                  elymax_v(1,i) = elymax_v(1,i+1); 
                  elxmax_v(1,i) = elxmax_v(1,i+1); 
                  enmax_v(1,i) = enmax_v(1,i+1); 
              end 
              elymax_v(1,nee) = ely; 
              elxmax_v(1,nee) = elx; 
              enmax_v(1,nee) = en(ely,elx); 
               
          else 
              for k = 1:nee-1 
                  if (en(ely,elx) > enmax_v(1,k)) & (en(ely,elx) < enmax_v(1,k+1)... 
                          & passive(ely,elx) == 0) 
                      for l = 1:k-1 
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                          elymax_v(1,l) = elymax_v(1,l+1); 
                          elxmax_v(1,l) = elxmax_v(1,l+1); 
                          enmax_v(1,l) = enmax_v(1,l+1); 
                      end 
                      elymax_v(1,k) = ely; 
                      elxmax_v(1,k) = elx; 
                      enmax_v(1,k) = en(ely,elx); 
                  end 
                   
              end 
          end 
     else 
          if (enmin_s(1,nee) > en(ely,elx) & passive(ely,elx) == 0); 
              for j = 1:nee-1 
                 elymin_s(1,j) = elymin_s(1,j+1); 
                 elxmin_s(1,j) = elxmin_s(1,j+1); 
                 enmin_s(1,j) = enmin_s(1,j+1); 
              end 
              elymin_s(1,nee) = ely; 
              elxmin_s(1,nee) = elx; 
              enmin_s(1,nee) = en(ely,elx); 
               
          else 
             for k = 1:nee-1 
                  if (en(ely,elx) < enmin_s(1,k)) & (en(ely,elx) > enmin_s(1,k+1)... 
                          & passive(ely,elx) == 0) 
                      for l = 1:k-1 
                          elymin_s(1,l) = elymin_s(1,l+1); 
                          elxmin_s(1,l) = elxmin_s(1,l+1); 
                          enmin_s(1,l) = enmin_s(1,l+1); 
                      end 
                      elymin_s(1,k) = ely; 
                      elxmin_s(1,k) = elx; 
                      enmin_s(1,k) = en(ely,elx); 
                  end 
                   
              end  
          end 
     end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 %(End) Sort the energy of the elements and keep "nee" elements to be exchanged with 
their pairs%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    end 
  end 
  cnew = c 
  if cnew < cbest 
      xbestprev = xbest; 
      enprevbest = enbest; 
      xbest = x; 
      enbest = en; 
      cbest = cnew; 
       
      delta_e = 0; 
      delta_x = 0; 
      for ely = 1: nely 
          for elx = 1:nelx 
              delta_e = delta_e + (enbest(ely,elx)-enprevbest(ely,elx))^2; 
              delta_x = delta_x + (xbest(ely,elx)-xbestprev(ely,elx))^2; 
          end 
      end 
      enormalized = delta_e/cbest; 
  end 
  cbest 
  delta_x 
  delta_e 
  enormalized 
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%(Start) "nee" elements exchange%%%%%%%%%%%%%%%%%%%%%%%%%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  for m = 1:nee 
      x(elymin_s(1,m),elxmin_s(1,m)) = xmin; 
      x(elymax_v(1,m),elxmax_v(1,m)) = 1; 
  end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%(End) "nee" elements exchange%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
hold on; 
subplot(1,2,1) 
colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6); 
subplot(1,2,2) 
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colormap(gray); imagesc(-xbest); axis equal; axis tight; axis off;pause(1e-6); 
end 
toc; 
t = toc 
%%%%%%%%%% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%FE-ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [U]=FE(nelx,nely,x) 
[KE] = lk;  
K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1)); 
F = sparse(2*(nely+1)*(nelx+1),1); U = sparse(2*(nely+1)*(nelx+1),1); 
for elx = 1:nelx 
  for ely = 1:nely 
    n1 = (nely+1)*(elx-1)+ely;  
    n2 = (nely+1)* elx   +ely; 
    edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2]; 
    K(edof,edof) = K(edof,edof) + x(ely,elx)*KE; 
  end 
end 
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM) 
F(2*(nelx+1)*(nely+1),1) = -1;  
fixeddofs   = [1:2*(nely+1)];  
alldofs     = [1:2*(nely+1)*(nelx+1)]; 
freedofs    = setdiff(alldofs,fixeddofs); 
% SOLVING 
U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);       
U(fixeddofs,:)= 0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ELEMENT STIFFNESS MATRIX %%%%%%%%%%%%%%%%%%%%%%%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [KE]=lk 
E = 1.;  
nu = 0.3; 
k=[ 1/2-nu/6   1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...  
   -1/4+nu/12 -1/8-nu/8  nu/6       1/8-3*nu/8]; 
KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8) 
                  k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3) 
                  k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2) 
                  k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5) 
                  k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4) 
                  k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7) 
                  k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6) 
                  k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


